Example of subset construction (from Kozen, Automata and Computation): Consider the set $A=\left\{x \in\{0,1\}^{*} \mid\right.$ 2nd symbol from right is 1$\}$.

A 3-state non-deterministic machine (NFA) with the set A of accepted strings is given in the figure above (a), with the states labelled q_{0}, q_{1}, q_{2}. The transition function for an NFA returns sets of possible states rather than particular states. Each such subset can be regarded as a particular state of an associated DFA. The "subset construction" thus associates to the above NFA a deterministic machine (DFA) whose states are the subsets $\phi,\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{0}, q_{1}\right\},\left\{q_{0}, q_{2}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}$ of the set $\left\{q_{0}, q_{1}, q_{2}\right\}$ of states of the NFA. The state transitions of the NFA are given at left below:

	0	1				
ϕ	ϕ	ϕ				
$\left\{q_{0}\right\}$	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$			0	1
$\left\{q_{1}\right\}$	$\left\{q_{2}\right\}$	$\left\{q_{2}\right\}$		$\left\{q_{0}\right\}$	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$
$\left\{q_{2}\right\} \mathrm{F}$	ϕ	ϕ	\Longrightarrow	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$
$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$		$\left\{q_{0}, q_{2}\right\} \mathrm{F}$	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$
$\left\{q_{0}, q_{2}\right\} \mathrm{F}$	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$		$\left\{q_{0}, q_{1}, q_{2}\right\} \mathrm{F}$	$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$
$\left\{q_{1}, q_{2}\right\} \mathrm{F}$	$\left\{q_{2}\right\}$	$\left\{q_{2}\right\}$				
$\left\{q_{0}, q_{1}, q_{2}\right\} \mathrm{F}$	$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$				

where F designates accepted final states, those containing q_{2}. Note however that the states $\phi,\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{1}, q_{2}\right\}$ are inaccessible, i.e., cannot be reached from the start state q_{0} via any string of transitions. Excluding those four leaves the state transitions at right above, defining a 4 -state DFA. This is identical to a deterministic model that remembers the last two bits seen and accepts the string iff the next to last is a 1 , as shown at right in the above figure (b), with states labelled by the last two bits seen. The transitions of the two models agree under the identifications $\left\{q_{0}\right\}=[00],\left\{q_{0}, q_{1}\right\}=[01],\left\{q_{0}, q_{2}\right\}=[10],\left\{q_{0}, q_{1}, q_{2}\right\}=[11]$.

A 6 -state NFA that accepts $A=\left\{x \in\{0,1\}^{*} \mid 5\right.$ th symbol from right is 1$\}$ is shown below. An equivalent DFA would need at least $2^{5}=32$ states to track the last 5 bits seen.

More generally, we can consider an $n+1$ state NFA that accepts the set of strings $A=\left\{x \in\{0,1\}^{*} \mid n^{\text {th }}\right.$ symbol from right is 1$\}$:

with the states now labelled $q_{0} \ldots q_{n}$. This NFA is exponentially smaller than the equivalent DFA, which requires at least 2^{n} states to keep track of the last n bits.

To see how the subset construction of a DFA works in this case, note first of all that since we start at state q_{0}, and since there is always a path from q_{0} to itself for an arbitrary string of 0's and 1's, then accessible states must always contain q_{0} (just as the accessible states always contained the state q_{0} in the 3 state NFA on the previous page). This reduces the states of the DFA from the 2^{n+1} possible to 2^{n} accessible. The transition table takes the form:

$$
\begin{aligned}
& \left\{q_{0}\right\} \\
& \left\{q_{0}, q_{i}\right\} \quad(i<n) \\
& \left\{q_{0}, q_{n}\right\} \mathrm{F} \\
& \left\{q_{0}, q_{i}, q_{j}\right\} \quad(i<j<n) \\
& \left\{q_{0}, q_{i}, q_{n}\right\} \mathrm{F} \\
& \quad \vdots \\
& \left\{q_{0}, q_{i_{1}}, \ldots, q_{i_{k-1}}, q_{i_{k}}\right\} \\
& \left\{q_{0}, q_{i_{1}}, \ldots, q_{i_{k-1}}, q_{n}\right\} \mathrm{F}
\end{aligned}
$$

0	1
$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$
$\left\{q_{0}, q_{i+1}\right\}$	$\left\{q_{0}, q_{1}, q_{i+1}\right\}$
$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$
$\left\{q_{0}, q_{i+1}, q_{j+1}\right\}$	$\left\{q_{0}, q_{1}, q_{i+1}, q_{j+1}\right\}$
$\left\{q_{0}, q_{i+1}\right\}$	$\left\{q_{0}, q_{1}, q_{i+1}\right\}$
$\quad \vdots$	\vdots
$\left\{q_{0}, q_{i_{1}+1}, \ldots, q_{i_{k-1}+1}, q_{i_{k}+1}\right\}$	$\left\{q_{0}, q_{1}, q_{i_{1}+1}, \ldots, q_{i_{k-1}+1}, q_{i_{k}+1}\right\}$
$\left\{q_{0}, q_{i_{1}+1} \ldots, q_{i_{k-1}+1}\right\}$	$\left\{q_{0}, q_{1}, q_{i_{1}+1}, \ldots, q_{i_{k-1}+1}\right\}$

(where in the next to last line we have $i_{1}<\ldots<i_{k-1}<i_{k}<n$).
We see that the mapping of states from the NFA to DFA via the subset construction is such that the q_{i} for $i=1, \ldots, n$ store the state of the previous n bits, with the absence or presence of a given q_{i} indicating whether or not the $i^{\text {th }}$ member of the previous n bits (counting from the right) is 0 or 1 . For example

```
\(\left\{q_{0}\right\}=[0 \ldots 0]\),
\(\left\{q_{0}, q_{1}\right\}=[0 \ldots 01]\),
\(\left.\left\{q_{0}, q_{i}\right\}=0 \ldots 1 \ldots 0\right]\) ( 1 in \(i^{\text {th }}\) position from right),
\(\left\{q_{0}, q_{i}, q_{j}\right\}=[0 \ldots 1 \ldots 1 \ldots 0]\) ( 1 s in \(i^{\text {th }}, j^{\text {th }}\) positions from right),
\(\left\{q_{0}, q_{i}, q_{j}, q_{k}\right\}=[0 \ldots 1 \ldots 1 \ldots 1 \ldots 0]\) ( 1 s in \(i^{\text {th }}, j^{\text {th }}, k^{\text {th }}\) positions from right),
etc.
```

and the accepted states are the 2^{n-1} that contain q_{n}, i.e., with a 1 in the $n^{\text {th }}$ position from the right.

