
How many coin flips on average does it take to get n consecutive heads?

The process of flipping n consecutive heads can be described by a Markov chain in

which the states correspond to the number of consecutive heads in a row, as depicted

below. In this language, the question becomes how many steps does it take on average to

get from the state 0H to the state nH?0 H p1 � p 1 H 0 H p1 � p 1 H 2 Hp1 � p 0 H p1 � p 1 H 3 Hp1 � p p 2 H1 � p
0 H p1 � p 1 H 3 Hp1 � p p 2 H1 � p n Hpn � 11 � p Hp p1 � p

a ) b ) c )d )
Assume the coin has probability p of coming up heads. Begin with the case depicted

in fig. (a), and let A1 be the average number of flips on average before getting the first

head. If the first flip is heads (probability p), then the answer is 1; if, on the other hand,

the first flip is tails (probability 1− p), then one flip is wasted and there remain A1 to go.

These two observations give an equation for A1:

A1 = (1 − p)(1 + A1) + p · 1 , (a1)

with solution

A1 =
1

p
. (a2)

(This result should be familiar, since if the probability to remain in a state is 1 − p, then

the average number of steps to leave the state is∗
∑

∞

k=1 k(1 − p)k−1p = (1/p2)p = 1/p.)

For p = 1/2, we find A1 = 2, so on average two flips are required to get the first head if

the coin is fair.

Now consider A2, the average number of flips to get two heads in a row (fig. (b)).

Again, if the first flip is “wasted” on a tails, there’s a term (1 − p)(1 + A2) on the right

side. But now if the first flip is heads, there are two possibilities for what happens next.

If the next flip is tails, the first two flips are “wasted” and we’re back where we started.

∗ See footnote 2 below.
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But if the next flip is a head, then the goal is accomplished in two flips. This gives the

equation

A2 = (1 − p)(1 + A2) + p(1 − p)(2 + A2) + p2
· 2 , (b1)

with solution

A2 =
1 + p

p2
. (b2)

For p = 1/2, we find A2 = 6, so on average six flips are required to get 2 heads in a row if

the coin is fair.

Similar reasoning for A3, the average number of flips to get three heads in a row

(fig. (c)) gives

A3 = (1 − p)(1 + A3) + p(1 − p)(2 + A3) + p2(1 − p)(3 + A3) + p3
· 3 , (c1)

with solution

A3 =
1 + p + p2

p3
. (c2)

For p = 1/2, we find A3 = 14, so on average fourteen flips are required to get 3 heads in a

row if the coin is fair.

In general, the average number of flips to get n heads in a row (fig. (d)), An, satisfies

An = (1−p)(1+An)+p(1−p)(2+An)+p2(1−p)(3+An)+. . .+pn−1(1−p)(n+An)+pn
·n .

(d1)

Regrouping terms on the right hand side and using1 1 + p + p2 + . . . + pn−1 = 1−pn

1−p
gives

An = An(1 − p)(1 + p + p2 + . . . + pn−1) + (1 − p)(1 + 2p + 3p2 + . . . + npn−1) + npn

= An(1 − pn) + (1 − p + 2p − 2p2 + 3p2
− 3p3 + . . . + npn−1

− npn) + npn

= An − pnAn + (1 + p + p2 + . . . + pn−1) .

This results in

An =
1 + p + p2 + . . . + pn−1

pn
=

1 − pn

pn(1 − p)
=

p−n
− 1

1 − p
. (d2)

For p = 1/2, we find An = 2n+1
− 2 flips required to get n heads in a row if the coin is

fair, and the number grows exponentially in n.

1 To prove this, let Sn =
∑n−1

k=0 pk and note that 1 + pSn = Sn + pn.
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A slight generalization of this problem is to have a different probability for each

successive head, i.e., to switch to a coin with probability pj of getting a head when going

for the jth head in a row, as depicted in fig. (e) below:

e ) f )0 H p1 � p 1 H p1 � p p 2 H1 � p n Hpn � 1Hp1 � p1 2 3 n1 2 3 nn � 1 0 H n Hp1 � p n � 1Hn n
The average number of flips An to get n heads in a row now satisfies

An = (1 − p1)(1 + An) + p1(1 − p2)(2 + An) + p1p2(1 − p3)(3 + An)+

. . . + (p1p2 · · · pn−1)(1 − pn)(n + An) + (p1p2 · · ·pn) · n .
(e1)

Algebra similar to that leading from (d1) to (d2) now results in

An =
1 + p1 + p1p2 + . . . + p1p2 · · · pn−1

p1p2 · · · pn

. (e2)

Note 1: All of the above results can derived from a single recursion equation, as

suggested by fig. (f). Suppose An−1, the average number of flips required to reach n − 1

successive heads is known. Then An can be determined without knowing the precise details

of what happens for the first n− 1 flips, as depicted by the ellipsis (· · ·) in fig. (f). It takes

an average of An−1 steps to reach the state (n− 1)H. If the next flip is heads (probability

pn), then the answer is An−1 + 1; if, on the other hand, the next flip is tails (probability

1 − pn), then An−1 + 1 flips have been wasted and there remain An to go. These two

observations give an equation for An in terms of An−1:

An = (1 − pn)(An−1 + 1 + An) + pn(An−1 + 1) , (f1)

with solution

An = (An−1 + 1)
1

pn

. (f2)

Starting from A0 = 0, the above equation gives A1 = 1/p1, A2 = (1/p1 + 1)/p2 =

(1 + p1)/p1p2, A3 = (1 + p1 + p1p2)/p1p2p3, and by induction gives (e2) for An. For

p1 = p2 = . . . = pn = p, these are equivalent to (a2), (b2), (c2), (d2). So eq. (f2),

describing fig. (f), embodies the content of all of the previous equations.

Note 2: Another direct way to derive all of the above is based on the relation between

figures (a) and (f). The probability to loop around k times, i.e., to get to the state (n−1)H

and go back to 0H exactly k times before ultimately getting to nH is (1−pn)kpn, and the

average number of steps for this process is (An−1 + 1)k + An−1 + 1 = (k + 1)(An−1 + 1).
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Summing over k gives An =
∑

∞

k=0(An−1 + 1)(k + 1)(1 − pn)kpn. Using2 1 + 2(1 − p) +

3(1 − p)2 + . . . = 1
p2 , it follows that

An = (An−1 + 1)pn

∞
∑

k=0

(k + 1)(1 − pn)k = (An−1 + 1)pn

1

p2
n

= (An−1 + 1)
1

pn

,

reproducing the generating equation (f2). (The 1/pn is now recognized as the same familiar

1/p mentioned after eq. (a2).)

As usual, there’s more structure in these probability distributions than just the average

number of steps. Let pn(M) denote the probability of reaching n consecutive heads only

after exactly M flips of a single coin, each flip with probability p of heads. Then the

average satisfies An =
∑

∞

M=0 Mpn(M).

For n = 1, the probability to reach the first head in M flips is the probability of M −1

tails and one head, hence p1(M) = pM . The average number of flips until the first head is
∑

∞

k=0(k + 1)(1 − p)kp = 1/p. The probability distribution p1(M) is shown for a fair coin

(p = 1/2) in the first figure on the next page.

Additional figures show the probability distributions for n = 2, 3, 4, 5, 10. In general,

the probability vanishes, pn(M) = 0, for M < n since it’s impossible to have n consecutive

heads with fewer than n total flips. The first non-zero probability is pn(M = n) = pn,

corresponding to all heads for the first n flips. For the next n values of M , from M =

n + 1 through M = 2n flips, the probability is constant, pn(M) = pn+1, since it is fully

characterized by just the last n + 1 flips (i.e., a tail followed by n heads, and anything

can happen in the first M − (n + 1) flips). For larger values of M , pn(M) becomes the

probability of not having more than n− 1 consecutive heads in the first M − (n + 1) flips,

then followed by a final tail and n heads in the last n+1 flips. For example, for M = 2n+1

flips, that probability is just all the ways not to have n consecutive flips in the first n flips,

then the tail and n heads, so pn(M = 2n + 1) = (1 − pn)pn+1.

The probabilities pn(M) are thus related to the probability of having no more than n

consecutive heads in M − (n + 1) flips, in turn equal to 1 minus the probability of having

at least n consecutive heads in M − (n + 1) flips. In general, the probability of having at

least n consecutive heads in N flips of a fair coin (or equivalently the probability of at least

n consecutive successes in N Bernoulli trials) is difficult to write down in closed form. To

provide some intution for how those numbers behave, consider the example of N = 100.

2 To prove this, let S =
∑

∞

k=0 qk = 1
1−q

, and note that
∑

∞

k=0 kqk−1 = ∂
∂q

S = 1
(1−q)2 .
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Figures: The probabilities pn(M) of first flipping n consecutive heads after exactly M

flips of a fair (p = 1/2) coin, for n = 1, 2, 3, 4, 5, 10. M is plotted along the horizontal

axis. The red line shows the value of the average number of rolls required, eq. (d2):

An = 2n+1
− 2 (resp., 2,6,14,30,2046). The regions indicated in black represent the first

50% of the probability for each of the graphs.

5 INFO295 22 Nov 05



What is the probability p(n) of n heads in a row somewhere in a sequence of

100 coin flips?

For the case of a fair coin (p = 1/2), the results of a numerical simulation (2 million

“students” each flipping 100 times, simulated by a random number generator) are roughly

given by:

n p(n) z(n)

2 1 16.6

3 0.9997 7.04

4 0.97 3.26

5 0.81 1.56

6 0.55 0.76

7 0.32 0.37

8 0.17 0.18

9 0.088 0.09

10 0.044 0.045

11 0.022 0.022

12 0.011 0.011

13 0.0053 0.0053

14 0.0027 0.0027

15 0.0013 0.0013

16 0.00063 0.00063

Also shown is z(n), the average number of times that a string of n heads occurs (where by

definition, for example, six consecutive heads counts as exactly two occurrences of three

consecutive heads).

So if a class of 50 students were asked to generate random strings of 100 heads and

tails, roughly forty of them (81%) should have at least one occurrence of five consecutive

heads, roughly 27 (55%) at least six consecutive heads, and roughly 16 (32%) at least seven

consecutive heads (and similarly for consecutive tails).

Since these are relatively rare events, the number of times m that a string of n con-

secutive heads occurs will be roughly Poisson distributed, and determined by the mean

number of occurrences, Pn(m) = e−z(n)
(

z(n)
)m

/m!. For example, since the mean number

of times that five heads in a row occur in a hundred flips is z(5) = 1.56, the probability

that five heads in a row occur m times is Pn(m) = e−1.56(1.56)m/m!, and the probabilities

of 0–5 occurrences respectively are .21,.33,.26,.13,.05,.02. Similarly, for n = 7, with a mean

z(7) = .37, the probabilities for m = 0, 1, 2, 3 are .69,.26,.05,.01 . (For larger values of n,

the average number of occurrences z(n) appoaches the probability p(n), so the likelihood

is one occurrence if at all, and the probabilities Pn(m) are dominated by m = 0, 1.)

6 INFO295 22 Nov 05


