Lecture 28: Course summary

INFO 2950:
Mathematical Methods for Information Science

One last application: finding 'bursts' in email

Idea: one way to organize email is to divide it into periods (by date) in which some term occurs frequently and when it occurs infrequently.
E.g. 'prelim'

How could we automatically detect such 'bursts'?

Idea \#1

Suppose we divide email into days, and check how many emails contain the term in a day.

$$
\begin{aligned}
& \text { ar. } \\
& \lambda=\text { \& } \text { emilik canting } \\
& \text { robability in indyy }
\end{aligned}
$$

What might be a reasonable probability hady distribution for the number of emails containing the term in a day? $\lambda^{k} e^{-\lambda}$

$$
\text { Poisson distibution pr }\left[k \text { thays } s=\frac{\lambda^{k} e}{k!}\right.
$$

We will need two distributions, one for when the term is getting mentioned a lot (the burst) and one when it is not mentioned so much.

$$
\lambda_{1} \ll \lambda_{2}
$$

What should be true of the two

$$
\begin{aligned}
& \text { distributions? } \\
& \text { "Lou " prod } \frac{\lambda_{1}^{k} e^{-\lambda}}{k!}
\end{aligned} \text { "Bust" } \frac{\lambda_{2}^{k} e^{-k}}{k!}
$$

Idea \#2

How can we model the transitions) between when we have a burst and when we don't?
Marta Chin

Now given a bunch of email, how can we figure out when a burst was most likely occurring?

Use Hellen Markov Model Literal's alg to decide which
days 'Lav''
days 'Bust'

This is (mostly) the idea of a paper of Kleinberg, "Bursts and Hierarchical Structure in Streams" (2002).

Two changes:

- Have lots of states, not just two

- Use Viterbi to minimize cost, not maximize probability

Results for 'prelim'

Result for 'ITR'

Applying to texts

Can apply to all the words in a body of texts and see when those words have bursts.

Example: Presidential State of the Union addresses.
\square

Another example: titles from the database research community.

Where have we been?

dd What will we do?

Introduction, set theory
Probability and statistics (~8 lectures)
Graph theory and algorithms (~8 lectures)
Markov models and algorithms (~6 lectures)
Finite state automata (~ 4 lectures)

How to detect spam

How does a computer know when a message is spam?

How does Google Maps work to find directions?

What can we do with social networks?

Adamic 05

And what does it have to do with bridges in Königsberg?

How does Google find the page you want?

Google	intoreso comel
Search	
Emproma	
vasos	
Stupma	隹
Mose	
cin	
Stomearthods	INFO 2950 - Courses of Study - Cornell University

And how can you quickly find the information you want?

```
[dpwmson@cs130 ~]$ egrep 'dm[0-9][0-9][0-9]' /etc/passwd
mdm275:x:2350:2351:Michael Mazzola:/info230/SP11/users/mdm275//www:/usr/local/sb
in/scponlyc
[dpwmson@cs130 ~]$ \square
```


About the final

Wednesday, May 16, 2-4:30PM, Hollister 401
Open book, open notes: any notes you took yourself, any material from the course website, and Rosen
Comprehensive

Coverage

Set theory

Basic terminology
Set operations (incl. Cartesian product, power set)

Probability

Finite probability spaces, events
Counting and ordering; binomial coefficients and factorials
Uniform probability distributions
Tricks for computing probability
Joint probability, conditional probability
Bayes' theorem
Bayesian spam filtering
Naïve Bayes assumptions
Random variables
Expected values, variance, standard deviation
Bernoulli trials/binomial distribution
Central limit theorem
Rare events and the Poisson distribution

Exponentials and logarithms

Expressions for e
Manipulating exponentials and logarithms
Graph theory
Basic terminology (incl. paths, cycles, trees)
Eulerian paths and Eulerian circuits
Conditions under which these exist
Hamiltonian circuits
Conditions under which these exist
NP-complete (rough definition)
Planar graphs
Euler's formula and consequences
Kuratowski's theorem
Graph coloring (incl. planar graphs)
Spanning trees
Finding a spanning tree (including depth-first and breadth-first search)
Minimum spanning trees (including Kruskal and Prim's algorithm)
Shortest paths and Dijkstra's algorithm
The traveling salesman problem
Why it is as hard as finding a Hamiltonian circuit
Finding a near-optimal tour
The small world phenomenon and random graphs
Milgram's experiment
Erdos-Renyi/Watts-Strogatz/Kleinberg random graphs

The web and PageRank
A brief history of the web
PageRank
HITS
Eigenvalues/eigenvectors
Markov chains
Calculating probabilities and expectations
Types of states and ergodic chains
Stationary distributions
Estimating transition probabilities
Applications: Mark V. Shaney and speech recognition
Hidden Markov models and the Viterbi algorithm

Finite automata

Deterministic finite automata
Nondeterministic finite automata
Equivalence of nondeterministic and deterministic finite automata (the subset construction)
Nonregular languages
Regular expressions
The equivalence of finite automata and regular expressions
Turing machines, including the Church/Turing thesis and the halting problem

Practice final review

Monday May 14, 1-3, room TBA

Office hours

Tuesday May 8, 11-12
Wednesday May 9, 11-12
Friday May 11, 11-12
Tuesday May 15, 10-12
By appointment

Course evaluation

Fill out the College of Engineering course evaluation for INFO 2950, get 5 bonus points on the final.

If you want to know more...

Probability

ENGRD 2700
ORIE 3120 (databases + stats)
ORIE 3500 (requires ENGRD 2700)
MATH 4710 (requires calculus)
ORIE 4740 (data mining; requires 3500)

Graph theory and algorithms

CS 4820 Algorithms (needs CS 3110)
ORIE 4330 Discrete Models (needs ORIE 3300 and 2110)

Markov chains and applications

MATH 4740 (need 4710)
ORIE 3510 Stochastic Processes (need 3500)

CS 4780 Machine Learning (CS 2110)

Math models of computing
 CS 4810 Theory of Computing

Best wishes for finals and summer!

