
The length l(p) of a path p is the number of edges in the path. The

distance between two vertices v1 and v2 written d(v1, v2) is the length of

the shortest path connecting the vertices, d(v1, v2) = min{l(p) | p is a path

connecting v1 and v2}. We often represent the distances of all pairs of vertices

in a graph with a matrix.

Example The array below shows the distance matrix for the graph G1.

D =

0 1 1 1 1 2

1 0 2 1 2 2

1 2 0 1 2 2

1 1 1 0 2 1

1 2 2 2 0 3

2 2 2 1 3 0

The diameter of a graph G is the maximum distance between any two

vertices in G, diam(G) = max{d(v1, v2) | v1, v2 are vertices of G}.

Example The diameter of G1 is 3. The diameter of the first subgraph in

Figure 4 is 2 and the diameter of the second subgraph is 4.

Another matrix often associated to a graph G is the adjacency matrix

which has entry ij = 1 if (vi, vj) ∈ E(G) and equal to 0 otherwise.

Example Below is the adjacency matrix for G1.

D =

0 1 1 1 1 0

1 0 0 1 0 0

1 0 0 1 0 0

1 1 1 0 0 1

1 0 0 0 0 0

0 0 0 1 0 0

11

A rooted tree is a graph with a distinguished vertex called the root of the

tree. Often we draw a rooted tree with the root on the top and the other

vertices in layers below corresponding to their distance from the root. The

collection of vertices at distance i from the root is called the ith level of the

tree. The depth of a rooted tree is the number of levels of the tree.

Example Figure 15 is the tree of Figure 11 rooted at vertex 1.

43

1

2 6

Root

Level 1

Level 2

5

Figure 15: A rooted tree with depth 2.

For a vertex of a rooted tree at level i, its neighbor on level i− 1 is called

its parent and its neighbors on level i + 1 is called its children. A rooted

binary tree is a rooted tree such that each vertex has at most 2 children.

Example In Figure 15, vertex 1 has children {3, 4, 5} and vertex 4 has

children {2, 6}. This tree is not a binary tree because vertex 1 has three

children. If we removed vertex 5, the resulting tree would be binary.

A spanning tree T = (V ′, E ′) of a graph G = (V,E) is a subgraph such

that T is a tree and V ′ = V .

Example In Figure 16 we show three different spanning trees of G1.

43

1

5

6

2

43

1

5

6

2

43

1

5

6

2

Figure 16: Spanning trees.

12

Next we consider ways of finding spanning trees of arbitrary simple graphs.

Here we consider two algorithms, breadth first search and depth first search.

For either of these algorithms, we must have an ordering on the vertices

of the graph. In most of our examples, the vertices have been labeled by

{1, 2, . . . , n} where n is the number of vertices. With this kind of labeling,

we have a natural ordering where the vertex labeled 1 comes first then 2 and

so on. These algorithms will output a rooted spanning tree.

Depth First Search Algorithm

Step 1: Let v be a variable. Let v1 be the vertex of smallest label in G.

Initialize v to v1. Define T to be the tree consisting of just the vertex v.

Step 2: Find the vertex w of smallest label such that (v, w) is an edge in G

and we have not yet considered w.

• If such a w exists add the edge (v, w) to T . Reassign vertex w to the

variable v and repeat step 2.

• If no such w exists go to step 3.

Step 3: If v = v1 then stop, T is a spanning tree.

Step 4: If v 6= v1 then assign its parent in T to v and repeat step 2.

Example Let us run depth first search on the graph G1. Vertex 1 is the

vertex of smallest label. This will be the root of our tree. So we assign v = 1

and T is the tree of a single vertex 1. Next we look for the neighbor of 1 with

smallest label, this is vertex 2. Therefore we add the edge (1, 2) to T and set

v = 2. Now we look for the neighbor of 2 with smallest label. This is vertex

1 but we have already considered vertex 1 so we look for the next smallest

which is vertex 4. Again we add edge (2, 4) to T and set v = 4. From 4,

vertex 3 is the smallest labeled neighbor that we have not yet considered.

Hence we add the edge (3, 4) to T and set v = 3. Now we see that all

neighbors of 3 have already been considered and we must go to step 3. At

this point, v 6= v1 so we move to step 4. The parent of 3 in T is vertex 4

so we set v = 4 and move back to step 2. There is a neighbor of 4 that has

not yet been considered, vertex 6. Thus we add the edge (4, 6) to T and set

13

v = 6. Vertex 6 has no other neighbors, so we will have to move back to

its parent, vertex 4. All neighbors of 4 have been considered, so we must

move to its parent, vertex 2. Similarly, we must move back to the parent

of vertex 2 which is vertex 1. From here, there is a neighbor which has not

been considered, vertex 5. We add the edge (1, 5) to T and set v = 5. From

here we will backtrack to 1 and in step 3 v will equal v1 and we are done!

43

1

5

6

2

4

6

25

1

3

Figure 17: A spanning tree of G1 found using DFS.

Breadth First Search Algorithm

Step 1 Let L be an ordered set initialized to the set containing 1. Let i = 1.

Step 2 Find all neighbors of i not already in T . Add them in order to the

end of L. Add all edges {(i, x) |x ∈ N(i) and x /∈ T} to T .

• If |T | = n − 1 stop.

Step 3 Remove the first element of L, let i equal the new first element of L.

Go to step 2.

1

6

325 4

Figure 18: A spanning tree of G1 found using BFS.

14

A weighted graph is a graph such that to each edge e there is an associated

real number w(e) called the weight of the edge. Given a graph with weights

on each of its edges, we want to determine a spanning tree with the smallest

total weight, this is called a minimal spanning tree. The total weight of a

tree (or any graph) is the sum of the weights of its edges. Here we consider

a greedy algorithm, Kruskal’s Algorithm.

Kruskal’s Algorithm

Step 1 Take an edge e ∈ G such that w(e) is minimal.

• If T ∪ e is a tree, add e to T .

Step 2 Remove e from G.

Step 3 If |T | = n − 1 stop.

• Otherwise, go to step 1.

Example: For the graph in Figure 19, the edges of the spanning tree were

added in the following order: (1, 3), (2, 4), (4, 6), (1, 4), (1, 5).

43

1

5

6

2

43

1

5

6

2100

100

.25

67

9
33

15

.25

67

9
33

15

Figure 19: Minimal spanning tree.

15

Suppose we have a directed graph where the vertices represent tasks and

the edges represent dependence. Namely, the edge (i, j) means that task j

cannot be accomplished until task i is complete. Given such a graph, we

want to be able to determine an order to complete all tasks. We will call

such an order a total order for a directed graph. First however, we must ask

if such an order is possible. If for example the graph contained a directed

cycle we would not be able to find such an order. A directed graph with no

directed cycle is called an acyclic graph.

Example: The first graph of Figure 20 is not acyclic, (4, 1), (1, 3), (3, 4) is

a directed cycle. In the second graph, the edge (1, 3) has been replaced with

the edge (3, 1) and the graph is now acyclic.

43

1

5

6

2

43

1

5

6

2

Figure 20: One non-acyclic and one acyclic graph.

Proposition. A directed graph has a total order if and only if it is acyclic.

Now suppose we have an acyclic graph, next we give an algorithm for

finding a total order called topological sort.

Topological Sort

Step 1: Let i = 1 and G be an acyclic graph on n vertices.

Step 2: Find a vertex vi such that outdeg(vi) = 0.

• If i = n then stop. vn < vn−1 < . . . v2 < v1 is a total order.

• Otherwise, remove vi from G. Let i = i + 1. Repeat step 2.

Example In the second graph of Figure 20, one total ordering found by

topological search is: 3 < 6 < 4 < 1 < 2 < 5.

16

