Lecture 16: Small world...?

INFO 2950: Mathematical Methods for Information Science

Details

Targets:

- 1. Wife of divinity school student in Cambridge, MA
- 2. Stockbroker working in Boston, living in Sharon, MA

Starters:

- 1. From Wichita, KS
- 2. From Omaha, NE

More problems (Kleinfeld 2002)

How many chains actually completed?

- 1. 50 started, 3 completed, 8 intermediaries.
- 2. 217 started, 64 completed
 - 100 "blue chip" stock owners
 - 96 "random" (newspaper ad)
 - 100 from Boston

Erdős-Rényi graph: each edge present with probability p for some p.

What is expected number of edges? Degree? Clustering coefficient?

Expected number of edges

$$X = \text{flow} = \int_{0}^{1} \int_{0}^{1} \frac{dg_{c}}{dt} \text{ is present}$$

 $X_{(two)} = \int_{0}^{1} \int_{0}^{1} \frac{dg_{c}}{dt} \text{ is present}$
 $E[X_{(two)}] = p \cdot 1 + (1 - p) \cdot 0 = p$
 $E[X] = \sum_{(two) \in} E[X_{(two)}] = \binom{n}{2}p$
 $p = \int_{2}^{1} \Rightarrow graph \text{ is very have}$

Expected degree
X = # of neighbors of a node v

$$E[X] = p(n-1)$$

For social network, what should p be?
 $p^{-\frac{1}{2}} \Rightarrow know$ half the network, not realistic
 $p^{-\frac{1}{2}} \Rightarrow expect to know (00 people$

		From Newman 2002:				
Network	n	Mean degree z	Cc	Cc for randon grapl		
Internet (AS level)	6,374	3.8	0.24	0.0006		
WWW (sites)	153,127	35.2	0.11	0.0002		
Power grid	4,941	2.7	0.080	0.00054		
Biology collaborations	1,520,251	15.5	0.081	0.00001		
Mathematics collaborations	253,339	3.9	0.15	0.00001		
Film actor collaborations	449,913	113.4	0.20	0.0002		
Company directors	7,673	14.4	0.59	0.001		
Word co-occurrence	460,902	70.1	0.44	0.0001		
Neural network	282	14.0	0.28	0.049		
Metabolic network	315	28.3	0.59	0.09		
Food web	134	8.7	0.22	0.06		

<section-header><section-header><text><text>

Eq = event that on the jth step there's a vandom edge
into the square B

$$p(Ej) = \frac{\# \text{ of nodes in square B}}{n^2} = \frac{n^{23} \times n^{23}}{n^2} = \frac{n^{4/3}}{n^2} = n^{-2/3}$$
A = creat that any of the first $\frac{1}{2}n^{2/3}$ steps on path has
 $A = \frac{1}{2}n^{2}$ by $P(A) \leq \sum_{j=1}^{4} p(E_j) = (\frac{1}{2}n^{2/3})(n^{-2/3}) = \frac{1}{2}$

If we start outside B and event A does not occur
need
$$\frac{1}{2}n^{24}s$$
 steps
 $X = # \text{ of steps}$
 $E[X] = E[X|A]p(A) + E[X|A]p(\overline{A})$
 $\ge 0 + \frac{1}{2}n^{2/3} \cdot \frac{1}{2} = \frac{1}{4}n^{2/3}$

$$Xd = # \text{ of sleps to get to nodes of literce } MS \leq 2d$$

$$trom target$$

$$E[Xd] = 1 \cdot p(Xd=1) + 2 \cdot p(Xd=2) + 3 \cdot p(Xd=3) + \cdots$$

$$= p(Xd=1) + p(Xd=2) + p(Xd=3) + \cdots$$

$$\leq 1 + (1 - \frac{C}{\log_{2}n}) + (1 - \frac{C}{\log_{2}n})^{2} + \cdots$$

$$= \frac{1}{1 - (1 - \frac{C}{\log_{2}n})} = \frac{\log_{2}n}{C}$$

$$X = # of steps taken in total
X = X_{n/2} + X_{n/4} + X_{n/8} + \cdots + X_1 + 2
E[X] = E[X_{n/2}] + E[X_{n/4}] + E[X_{n/6}] + \cdots + E[X_1] + 2
\leq \frac{\log_2 n}{C} + \frac{\log_2 n}{C} + \frac{\log_2 n}{C} + \cdots + \frac{\log_2 n}{C} + 2
= \log_2 n \left(\frac{\log_2 n}{C}\right) + 2 = \left(\frac{\log_2 n}{C}\right)^2 + 2$$

Reality

Some evidence that the online world (at least) is really like this (random links with prob. proportional to d⁻²).

Liben-Nowell, Novak, Kumar, Raghavan, Tomkins 2005: LiveJournal

Backstrom, Sun, Marlow 2010: Facebook

Have a great spring break!