Regular Expressions

A regular expression A is a string (or pattern) formed from the following 6 pieces of information: $a \in \Sigma$, ϵ , \emptyset , and the operations: +, ., and *.

We think of a regular expression as pattern which can be matched by strings from Σ . The language of A, L(A) is equal to all those strings which match A, $L(A) = \{x \in \Sigma^* | x \text{ matches } A\}$.

For any
$$a \in \Sigma$$
, $L(a) = a$.

- $L(\epsilon) = \{\epsilon\}$
- $L(\emptyset) = \emptyset$

+ functions as an **or**, $L(A + B) = L(A) \cup L(B)$.

. creates a product structure, L(AB) = L(A)L(B).

* denotes concatenation, $L(A^*) = \{x_1 x_2 \dots x_n \mid x_i \in L(A) \text{ and } n \ge 0\}$

Example The regular expression $(ab)^*$ matches the set of strings: $\{\epsilon, ab, abab, ababab, abababab, \ldots\}$.

Example The regular expression $(aa)^*$ matches the set of strings on one letter which have even length.

Example The regular expression $(aaa)^* + (aaaaa)^*$ matches the set of strings of length equal to a multiple of 3 or 5.

We have seen that NFAs seem to be more compact than DFAs, but now we give a family of examples where NFAs are exponentially smaller than any DFA expressing the same language. Consider strings with the *n*th bit from the right equal to 1. We can represent this with an NFA on n + 1 states (see Figure 1). However, if we try to represent such strings with a DFA, we must use 2^n states. (why?)

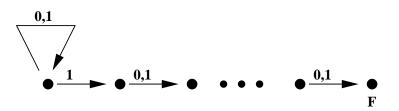


Figure 1: An NFA with n+1 states.

Next we will see that regular expressions are equivalent to DFAs (and hence NFAs) in that they express the same languages.

Theorem. For any NFA N there is a regular expression r s.t. L(N) = L(r). Conversely, for any regular expression r there exists an NFA N s.t. L(r) = L(N).

Example Figure 2 shows an NFA for the following regular expression:

 $(11+0)^*(00+1)^*.$

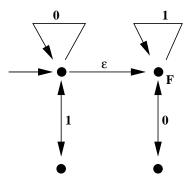


Figure 2: An NFA using an ϵ transition.

Suppose we are working over an alphabet of just one element, $\Sigma = \{a\}$. Then a collection A is regular iff the set $\{n|a^n \in A\}$ is such that after some value k, any $n \ge k$ $n \in A$ iff $n + t \in A$. Namely the set becomes periodic. The equivalent NFA has the form of Figure 3

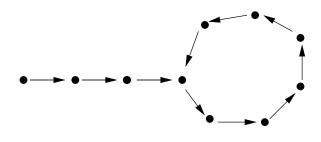


Figure 3: