
Nondeterministic Finite Automata

Nondeterministic Finite state automata differ from DFAs in that they allow

for an input bit to specify multiple possible next moves. Namely, in a NFA

we may move from state p to any of states q1, q2, . . . qk by seeing the same

input. Hence we will not have the same type of transition function as a DFA.

Instead, our transition function will take as input a state and an element of

the alphabet but return some subset of states. In an NFA, we also allow for

multiple start states.

A Nondeterministic Finite State Automata is a model with 5 components:

NFA = (Q, Σ, ∆, S, F )

Q = a finite set, the states.

Σ = a finite set, the alphabet

∆ = a function Q × Σ → P(Q), the transition function

S = a subset of Q, the start states

F = a subset of Q, the final states

Example Suppose we have an NFA with 3 states {home, cafe, school}.

Let the input alphabet be {l, s} and the transitions be as in the following

diagram:

HOME

Cafe

School

l

l

l

s

s

s

l

l

F

Figure 1: An NFA with 3 states.

1



We want to extend ∆ over strings just as we extended δ for DFAs. In

order to do this, we will also have to extend the first argument from Q to

P(Q). This is because as we consider moving through the NFA as prescribed

by some string, at any point we may be in one of many states. Formally we

have:

∆̂ : P(Q) × Σ∗ → P(Q) defined recursively by:

∆̂(P, ε) = P

∆̂(P, xa) = ∪q∈∆̂(P,x)∆(q, a)

We say that an NFA accepts a string x if there is some way to move

through it according to input x and end at a final state. Note that this just

requires that there exists some way to reach a final state, there may also

exist many ways not to reach the final state. We can write this as, the string

x is accepted if ∆̂(S, x) ∩ F 6= ∅. Just as for a DFA, the language is the set

{x ∈ Σ∗|NFA accepts x}.

Example What strings are accepted by the NFA in Figure 1? This model

accepts strings which end in an s. What simpler model could we use to

represent the same set of strings? We could remove the state cafe and all

adjacent transitions.

Although it first it may seem that NFAs are more general, they actually

have the exact same expressive power as DFAs. Namely, the sets of strings

which are languages of NFAs are exactly the regular sets.

Clearly any DFA could be considered an NFA. In the example above, if

we did remove the state cafe, the NFA would become a DFA. We will give

a general construction to form a DFA from any NFA. This is known as the

subset construction. Suppose we have an NFA = (Q, Σ, ∆, S, F ). Form the

DFA = (P(Q), Σ, δ, s, FD). The most important thing to notice is that the

set of states of the DFA is the power set of states of the NFA. Now we may

define δ(P, a) = ∆̂(P, a), s = S, and FD = {P ⊆ Q|P ∩ F 6= ∅}. Under this

construction, the languages of the two models are the same. (why??)

Example Suppose we have the NFA of Figure 2. The subset construction

would give the DFA of Figure 3.

2



Home School

s

l

s

sl s

F

Figure 2: An NFA with 2 states.

HOME

School

l

l

s

l
HOME

School

s

sF

Figure 3: The DFA of the subset construction.

An ε-transition is a transition in either a DFA or an NFA which can be

taken without seeing any input. It is something of a “free” transition. Again

this may be a natural idea in many contexts but does not add any extra

expression capability.

3


