Deterministic Finite Automata

An alphabet Σ is a finite set. A string over an alphabet Σ is a finite sequence of elements of Σ. A string of length 0 is the empty string and denoted ϵ.
Example Let $\Sigma=\{a, b, c\}$. The following are all strings over Σ : $a a b, b c c a b c a$, $a b c a b c a b c, b b b b$. Note that $a b \neq b a$

We denote the set of all strings over a given alphabet Σ by Σ^{*}. We define $\emptyset^{*}=\{\epsilon\}$. For any set other than the empty set, Σ^{*} is an infinite set.
A deterministic finite automata (DFA) is a model with 5 components:
$M=(Q, \Sigma, \delta, s, F)$
$Q=$ a finite set, the states.
$\Sigma=$ a finite set, the alphabet
$\delta=$ a function $Q \times \Sigma \rightarrow Q$, the transition function
$s=$ an element of Q, the start state
$F=$ a subset of Q, the final states
Example Let M be specified by the following data:
$Q=\{0,1,2\}$,
$\Sigma=\{a, b\}$,
$\delta(0, a)=0, \delta(0, b)=1, \delta(1, a)=0, \delta(1, b)=2, \delta(2, a)=2, \delta(2, b)=2$
$s=0$
$F=2$
If we input a string in this example with at least two $b s$, we will end up in state 2, the final state.

We call a string accepted by M if we run the DFA on the string and end in a final state. In general, the set of all strings which are accepted by some DFA M is called the language accepted by M and written $L(M)$. A set of strings is called regular if it is equal to $L(M)$ for some M.

The transition function of a DFA is defined on $Q \times \Sigma$. We would like to extend δ to be defined on strings. We build such a function recursively:

$$
\begin{aligned}
& \hat{\delta}: Q \times \Sigma^{*} \rightarrow Q \\
& \hat{\delta}(q, \epsilon)=q \\
& \hat{\delta}(q, x a)=\delta(\hat{\delta}(q, x), a)
\end{aligned}
$$

With this extended transition function we can define a language accepted by M as: $L(M)=\left\{x \in \Sigma^{*} \mid \delta(s, x) \in F\right\}$.
Example: The following set: $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not a regular set. (why?)
Lemma 1. Pumping Lemma For any regular set R : There exists $k \geq 0$ s.t. for any strings x, y, z with $x y z \in A$ and $|y| \geq k$ there exists u, v, w s.t. $y=u v w$ and for all $i, x u v^{i} w z \in A$.

We can form new DFAs from other ones. Here we look at the product construction. Suppose we have two DFAs, M_{1} and M_{2} both with input language Σ. Define M_{3} over Σ with statistics:

$$
\begin{aligned}
& Q_{3}=Q_{1} \times Q_{2}=\left\{(p, q) \mid p \in Q_{1} \text { and } q \in Q_{2}\right\} \\
& F_{3}=F_{1} \times F_{2}=\left\{(p, q) \mid p \in F_{1} \text { and } q \in F_{2}\right\} \\
& s_{3}=\left(s_{1}, s_{2}\right) \\
& \delta_{3}((p, q), a)=\left(\delta_{1}(p, a), \delta_{2}(q, a)\right)
\end{aligned}
$$

