
Chapter 20

The Small-World Phenomenon

20.1 Six Degrees of Separation

In the previous chapter, we considered how social networks can serve as conduits by which

ideas and innovations flow through groups of people. To develop this idea more fully, we now

relate it to another basic structural issue — the fact that these groups can be connected by

very short paths through the social network. When people try to use these short paths to

reach others who are socially very distant, they are engaging in a kind of “focused” search

that is much more targeted than the broad spreading pattern exhibited by the diffusion of

information or a new behavior. Understanding the relationship between targeted search and

wide-ranging diffusion is important in thinking more generally about the way things flow

through social networks.

As we saw in Chapter 2, the fact that social networks are so rich in short paths is known

as the small-world phenonemon, or the “six degrees of separation,” and it has long been the

subject of both anecdotal and scientific fascination. To briefly recapitulate what we discussed

in that earlier chapter, the first significant empirical study of the small-world phenomenon

was undertaken by the social psychologist Stanley Milgram [293, 386], who asked randomly

chosen “starter” individuals to each try forwarding a letter to a designated “target” person

living in the town of Sharon, MA, a suburb of Boston. He provided the target’s name,

address, occupation, and some personal information, but stipulated that the participants

could not mail the letter directly to the target; rather, each participant could only advance

the letter by forwarding it to a single acquaintance that he or she knew on a first-name

basis, with the goal of reaching the target as rapidly as possible. Roughly a third of the

letters eventually arrived at the target, in a median of six steps, and this has since served as

D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World.
To be published by Cambridge University Press, 2010. Draft version: October 23, 2009.

621
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basic experimental evidence for the existence of short paths in the global friendship network,

linking all (or almost all) of us together in society. This style of experiment, constructing

paths through social networks to distant target people, has been repeated by a number of

other groups in subsequent decades [130, 177, 254].

Milgram’s experiment really demonstrated two striking facts about large social networks:

first, that short paths are there in abundance; and second, that people, acting without any

sort of global “map” of the network, are effective at collectively finding these short paths.

It is easy to imagine a social network where the first of these is true but the second isn’t

— a world where the short paths are there, but where a letter forwarded from thousands

of miles away might simply wander from one acquaintance to another, lost in a maze of

social connections [245]. A large social-networking site where everyone was known only by

9-digit pseudonyms would be like this: if you were told, “Forward this letter to user number

482285204, using only people you know on a first-name basis,” the task would clearly be

hopeless. The real global friendship network contains enough clues about how people fit

together in larger structures — both geographic and social — to allow the process of search

to focus in on distant targets. Indeed, when Killworth and Bernard performed follow-up

work on the Milgram experiment, studying the strategies that people employ for choosing

how to forward a message toward a target, they found a mixture of primarily geographic

and occupational features being used, with different features being favored depending on the

characteristics of the target in relation to the sender [240].

We begin by developing models for both of these principles — the existence of short paths

and also the fact that they can be found. We then look at how some of these models are

borne out to a surprising extent on large-scale social-network data. Finally, in Section 20.6,

we look at some of the fragility of the small-world phenomenon, and the caveats that must

be considered in thinking about it: particularly the fact that people are most successful

at finding paths when the target is high-status and socially accessible [252]. The picture

implied by these difficulties raises interesting additional points about the global structure of

social networks, and suggests questions for further research.

20.2 Structure and Randomness

Let’s start with models for the existence of short paths: Should we be surprised by the

fact that the paths between seemingly arbitrary pairs of people are so short? Figure 20.1(a)

illustrates a basic argument suggesting that short paths are at least compatible with intuition.

Suppose each of knows more than 100 other people on a first-name basis (in fact, for most

people, the number is significantly larger). Then, taking into account the fact that each of

your friends has at least 100 friends other than you, you could in principle be two steps

away from over 100 · 100 = 10, 000 people. Taking into account the 100 friends of these
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(a) Pure exponential growth produces a small world
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Figure 20.1: Social networks expand to reach many people in only a few steps.

people brings us to more than 100 · 100 · 100 = 1, 000, 000 people who in principle could be

three steps away. In other words, the numbers are growing by powers of 100 with each step,

bringing us to 100 million after four steps, and 10 billion after five steps.

There’s nothing mathematically wrong with this reasoning, but it’s not clear how much

it tells us about real social networks. The difficulty already manifests itself with the second

step, where we conclude that there may be more than 10, 000 people within two steps of you.

As we’ve seen, social networks abound in triangles — sets of three people who mutually

know each other — and in particular, many of your 100 friends will know each other. As a

result, when we think about the nodes you can reach by following edges from your friends,

many of these edges go from one friend to another, not to the rest of world, as illustrated

schematically in Figure 20.1(b). The number 10, 000 came from assuming that each of your

100 friends was linked to 100 new people; and without this, the number of friends you could

reach in two steps could be much smaller.

So the effect of triadic closure in social networks works to limit the number of people

you can reach by following short paths, as shown by the contrast between Figures 20.1(a)
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(a) Nodes arranged in a grid (b) A network built from local structure and random edges

Figure 20.2: The Watts-Strogatz model arises from a highly clustered network (such as the
grid), with a small number of random links added in.

and 20.1(b). And, indeed, at an implicit level, this is a large part of what makes the small-

world phenomenon surprising to many people when they first hear it: the social network

appears from the local perspective of any one individual to be highly clustered, not the kind

of massively branching structure that would more obviously reach many nodes along very

short paths.

The Watts-Strogatz model. Can we make up a simple model that exhibits both of the

features we’ve been discussing: many closed triads, but also very short paths? In 1998,

Duncan Watts and Steve Strogatz argued [404] that such a model follows naturally from a

combination of two basic social-network ideas that we saw in Chapter 3: homophily (the

principle that we connect to others who are like ourselves) and weak ties (the links to

acquaintances that connect us to parts of the network that would otherwise by far away).

Homophily creates many triangles, while the weak ties still produce the kind of widely

branching structure that reaches many nodes in a few steps.

Watts and Strogatz made this proposal concrete in a very simple model that generates

random networks with the desired properties. Paraphrasing their original formulation slightly

(but keeping the main idea intact), let’s suppose that everyone lives on a two-dimensional

grid — we can imagine the grid as a model of geographic proximity, or potentially some

more abstract kind of social proximity, but in any case a notion of similarity that guides the

formation of links. Figure 20.2(a) shows the set of nodes arranged on a grid; we say that
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Figure 20.3: The general conclusions of the Watts-Strogatz model still follow even if only a
small fraction of the nodes on the grid each have a single random link.

two nodes are one grid step apart if they are directly adjacent to each other in either the

horizontal or vertical direction.

We now create a network by giving each node two kinds of links: those explainable purely

by homophily, and those that constitute weak ties. Homophily is captured by having each

node form a link to all other nodes that lie within a radius of up to r grid steps away, for

some constant value of r: these are the links you form to people because you are similar to

them. Then, for some other constant value k, each node also forms a link to k other nodes

selected uniformly at random from the grid — these correspond to weak ties, connecting

nodes who lie very far apart on the grid.

Figure 20.2(b) gives a schematic picture of the resulting network — a hybrid structure

consisting of a small amount of randomness (the weak ties) sprinkled onto an underlying

structured pattern (the homophilous links). Watts and Strogatz observe first that the net-

work has many triangles: any two neighboring nodes (or nearby nodes) will have many

common friends, where their neighborhoods of radius r overlap, and this produces many

triangles. But they also find that there are — with high probability — very short paths

connecting every pair of nodes in the network. Roughly, the argument is as follows. Suppose
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we start tracing paths outward from a starting node v, using only the k random weak ties

out of each node. Since these edges link to nodes chosen uniformly at random, we are very

unlikely to ever see a node twice in the first few steps outward from v. As a result, these first

few steps look almost like the picture in Figure 20.1(a), when there was no triadic closure,

and so a huge number of nodes are reached in a small number of steps. A mathematically

precise version of this argument was carried out by Bollobás and Chung [66], who determined

the typical of lengths of paths that it implies.

Once we understand how this type of hybrid network leads to short paths, we in fact find

that a surprisingly small amount of randomness is needed to achieve the same qualitative

effect. Suppose, for example, that instead of allowing each node to have k random friends, we

only allow one out of every k nodes to have a single random friend — keeping the proximity-

based edges as before, as illustrated schematically in Figure 20.3. Loosely speaking, we can

think of this model with fewer random friends as corresponding to a technologically earlier

time, when most people only knew their near neighbors, and a few people knew someone far

away. Even this network will have short paths between all pairs of nodes. To see why, suppose

that we conceptually group k × k subsquares of the grid into “towns.” Now, consider the

small-world phenomenon at the level of towns, each town contains approximately k people

who each have a random friend, and so the town collectively has k links to other towns

selected uniformly at random. So this is just like the previous model, except that towns are

now playing the role of individual nodes — and so we can find short paths between any pair

of towns. But now to find a short path between any two people, we first find a short path

between the two towns they inhabit, and then use the proximity-based edges to turn this

into an actual path in the network on individual people.

This, then, is the crux of the Watts-Strogatz model: introducing a tiny amount of ran-

domness — in the form of long-range weak ties — is enough to make the world “small,” with

short paths between every pair of nodes.

20.3 Decentralized Search

Let’s now consider the second basic aspect of the Milgram small-world experiment — the fact

that people were actually able to collectively find short paths to the designated target. This

novel kind of “social search” task was a necessary consequence of the way Milgram formulated

the experiment for his participants. To really find the shortest path from a starting person

to the target, one would have to instruct the starter to forward a letter to all of his or her

friends, who in turn should have forwarded the letter to all of their friends, and so forth.

This “flooding” of the network would have reached the target as rapidly as possible — it

is essentially the breadth-first search procedure from Chapter 2 — but for obvious reasons,

such an experiment was not a feasible option. As a result, Milgram was forced to embark
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Figure 20.4: An image from Milgram’s original article in Psychology Today, showing a “com-
posite” of the successful paths converging on the target person. Each intermediate step is
positioned at the average distance of all chains that completed that number of steps. (Image
from [293].)

on the much more interesting experiment of constructing paths by “tunneling” through the

network, with the letter advancing just one person at a time — a process that could well

have failed to reach the target, even if a short path existed.

So the success of the experiment raises fundamental questions about the power of collec-

tive search: even if we posit that the social network contains short paths, why should it have

been structured so as to make this type of decentralized search so effective? Clearly the net-

work contained some type of “gradient” that helped participants guide messages toward the

target. As with the Watts-Strogatz model, which sought to provide a simple framework for

thinking about short paths in highly clustered networks, this type of search is also something

we can try to model: can we construct a random network in which decentralized routing

succeeds, and if so, what are the qualitative properties that are crucial for success?

A model for decentralized search. To begin with, it is not difficult to model the kind

of decentralized search that was taking place in the Milgram experiment. Starting with

the grid-based model discussed of Watts and Strogatz, we suppose that a starting node s

is given a message that it must forward to a target node t, passing it along edges of the

network. Initially s only knows the location of t on the grid, but, crucially, it does not know

the random edges out of any node other than itself. Each intermediate node along the path

has this partial information as well, and it must choose which of its neighbors to send the

message to next. These choices amount to a collective procedure for finding a path from s to

t — just as the participants in the Milgram experiment collectively constructed paths to the
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(a) A small clustering exponent (b) A large clustering exponent

Figure 20.5: With a small clustering exponent, the random edges tend to span long distances
on the grid; as the clustering exponent increases, the random edges become shorter.

target person. We will evaluate different search procedures according to their delivery time

— the expected number of steps required to reach the target, over a randomly generated set

of long-range contacts, and randomly chosen starting and target nodes.

Unfortunately, given this set-up, one can prove that decentralized search in the Watts-

Strogatz model will necessarily require a large number of steps to reach a target — much

larger than the true length of the shortest path [245]. As a mathematical model, the Watts-

Strogatz network is thus effective at capturing the density of triangles and the existence of

short paths, but not the ability of people, working together in the network, to actually find

the paths. Essentially, the problem is that the weak ties that make the world small are “too

random” in this model: since they’re completely unrelated to the similarity among nodes

that produces the homophily-based links, they’re hard for people to use reliably.

One way to think about this is in terms of Figure 20.4, a hand-drawn image from Mil-

gram’s original article in Psychology Today. In order to reach a far-away target, one must

use long-range weak ties in a fairly structured, methodical way, constantly reducing the dis-

tance to the target. As Milgram observed in the discussion accompanying this picture, “The

geographic movement of the [letter] from Nebraska to Massachusetts is striking. There is a

progressive closing in on the target area as each new person is added to the chain” [293]. So

it is not enough to have a network model in which weak ties span only the very long ranges;

it is necessary to span all the intermediate ranges of scale as well. Is there a simple way to

adapt the model to take this into account?
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20.4 Modeling the Process of Decentralized Search

Although the Watts-Strogatz model does not provide a structure where decentralized search

can be performed effectively, a mild generalization of the model in fact exhibits both prop-

erties we want: the networks contain short paths, and these short paths can be found using

decentralized search [245].

Generalizing the network model. We adapt the model by introducing one extra quan-

tity that controls the “scales” spanned by the long-range weak ties. We have nodes on a grid

as before, and each node still has edges to each other node within r grid steps. But now,

each of its k random edges is generated in a way that decays with distance, controlled by a

clustering exponent q as follows. For two nodes v and w, let d(v, w) denote the number of

grid steps between them. (This is their distance if one had to walk along adjacent nodes on

the grid.) In generating a random edge out of v, we have this edge link to w with probability

proportional to d(v, w)−q.

So we in fact have a different model for each value of q. The original grid-based model

corresponds to q = 0, since then the links are chosen uniformly at random; and varying q

is like turning a knob that controls how uniform the random links are. In particular, when

q is very small, the long-range links are “too random,” and can’t be used effectively for

decentralized search (as we saw specifically for the case q = 0 above); when q is large, the

long-range links are “not random enough,” since they simply don’t provide enough of the

long-distance jumps that are needed to create a small world. Pictorially, this variation in q

can be seen in the difference between the two networks in Figure 20.5. Is there an optimal

operating point for the network, where the distribution of long-range links is sufficiently

balanced between these extremes to allow for rapid decentralized search?

In fact there is. The main result for this model is that, in the limit of large network

size, decentralized search is most efficient when q = 2 (so that random links follow an

inverse-square distribution). Figure 20.6 shows the performance of a basic decentralized

search method across different values of q, for a network of several hundred million nodes.

In keeping with the nature of the result — which only holds in the limit as the network size

goes to infinity — decentralized search has about the same efficiency on networks of this

size across all exponents q between 1.5 and 2.0. (And at this size, it’s best for a value of q

slightly below 2.) But the overall trend is already clear, and as the network size increases,

the best performance occurs at exponents q closer and closer to 2.

A Rough Calculation Motivating the Inverse-Square Network. It is natural to

wonder what’s special about the exponent q = 2 that makes it best for decentralized search.

In Section 20.7 at the end of this chapter, we describe a proof that decentralized search is

efficient when q = 2, and sketch why search is more efficient with q = 2 — in the limit of
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Figure 20.6: Simulation of decentralized search in the grid-based model with clustering
exponent q. Each point is the average of 1000 runs on (a slight variant of) a grid with 400
million nodes. The delivery time is best in the vicinity of exponent q = 2, as expected; but
even with this number of nodes, the delivery time is comparable over the range between 1.5
and 2 [245].

large network size — than with any other exponent. But even without the full details of the

proof, there’s a short calculation that suggests why the number 2 is important. We describe

this now.

In the real world where the Milgram experiment was conducted, we mentally organize

distances into different “scales of resolution”: something can be around the world, across

the country, across the state, across town, or down the block. A reasonable way to think

about these scales of resolution in a network model — from the perspective of a particular

node v — is to consider the groups of all nodes at increasingly large ranges of distance from

v: nodes at distance 2-4, 4-8, 8-16, and so forth. The connection of this organizational

scheme to decentralized search is suggested by Figure 20.4: effective decentralized search

“funnels inward” through these different scales of resolution, as we see from the way the

letter depicted in this figure reduces its distance to the target by approximately a factor of

two with each step.

So now let’s look at how the inverse-square exponent q = 2 interacts with these scales of

resolution. We can work concretely with a single scale by taking a node v in the network,

and a fixed distance d, and considering the group of nodes lying at distances between d and

2d from v, as shown in Figure 20.7.

Now, what is the probability that v forms a link to some node inside this group? Since

area in the plane grows like the square of the radius, the total number of nodes in this group

is proportional to d2. On the other hand, the probability that v links to any one node in

the group varies depending on exactly how far out it is, but each individual probability

is proportional to d−2. These two terms — the number of nodes in the group, and the
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Figure 20.7: The concentric scales of resolution around a particular node.

probability of linking to any one of them — approximately cancel out, and we conclude: the

probability that a random edge links into some node in this ring is approximately independent

of the value of d.

This, then, suggests a qualitative way of thinking about the network that arises when

q = 2: long-range weak ties are being formed in a way that’s spread roughly uniformly over

all different scales of resolution. This allows people fowarding the message to consistently

find ways of reducing their distance to the target, no matter how near or far they are from it.

In this way, it’s not unlike how the U.S. Postal Service uses the address on an envelope for

delivering a message: a typical postal address exactly specifies scales of resolution, including

the country, state, city, street, and finally the street number. But the point is that the postal

system is centrally designed and maintained at considerable cost to do precisely this job; the

corresponding patterns that guide messages through the inverse-square network are arising

spontaneously from a complete random pattern of links.
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Figure 20.8: The population of the LiveJournal network studied by Liben-Nowell et al.
(Image from [273].)

20.5 Empirical Analysis and Generalized Models

The results we’ve seen thus far have been for stylized models, but they raise a number of

qualitative issues that one can try corroborating with data from real social networks. In

this section we discuss empirical studies that analyze geographic data to look for evidence

of the exponent q = 2, as well as more general versions of these models that incorporate

non-geographic notions of social distance.

Geographic Data on Friendship. In the past few years, the rich data available on social

networking sites has made it much easier to get large-scale data that provides insight into

how friendship links scale with distance. Liben-Nowell et al. [273] used the blogging site

LiveJournal for precisely this purpose, analyzing roughly 500,000 users who provided a U.S.

ZIP code for their home address, as well as links to their friends on the system. Note that

LiveJournal is serving here primarily as a very useful “model system,” containing data on

the geographic basis of friendship links on a scale that would be enormously difficult to

obtain by more traditional survey methods. From a methodological point of view, it is an

interesting and fairly unresolved issue to understand how closely the structure of friendships

defined in on-line communities corresponds to the structure of friendships as we understand

them in off-line settings.

A number of things have to be done in order to align the LiveJournal data with the

basic grid model, and perhaps the most subtle involves the fact that the population density

of the users is extremely non-uniform (as it is for the U.S. as a whole). See Figure 20.8

for a visualization of the population density in the LiveJournal data. In particular, the
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(a) w is the 7th closest node to v.

distance d

rank ~ d
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(b) Rank-based friendship with uniform population den-
sity.

Figure 20.9: When the population density is non-uniform, it can be useful to understand
how far w is from v in terms of its rank rather than its physical distance. In (a), we say that
w has rank 7 with respect to v because it is the 7th closest node to v, counting outward in
order of distance. In (b), we see that for the original case in which the nodes have a uniform
population density, a node w at distance d from v will have a rank that is proportional to
d2, since all the nodes inside the circle of radius d will be closer to v than w is.

inverse-square distribution is useful for finding targets when nodes are uniformly spaced in

two dimensions; what’s a reasonable generalization to the case in which they can be spread

very non-uniformly?

Rank-Based Friendship. One approach that works well is to determine link probabilities

not by physical distance, but by rank. Let’s suppose that as a node v looks out at all other

nodes, it ranks them by proximity: the rank of a node w, denoted rank(w), is equal to the

number of other nodes that are closer to v than w is. For example, in Figure 20.9(a), node

w would have rank seven, since seven others nodes (including v itself) are closer to v than

w is. Now, suppose that for some exponent p, node v creates a random link as follows: it

chooses a node w as the other end with probability proportional to rank(w)−p. We will call

this rank-based friendship with exponent p.

Which choice of exponent p would generalize the inverse-square distribution for uniformly-

spaced nodes? As Figure 20.9(b) shows, if a node w in a uniformly-spaced grid is at distance

d from v, then it lies on the circumference of a disc of radius d, which contains about d2 closer

nodes — so its rank is approximately d2. Thus, linking to w with probability proportional

to d−2 is approximately the same as linking with probability rank(w)−1, so this suggests

that exponent p = 1 is the right generalization of the inverse-square distribution. In fact,

Liben-Nowell et al. were able to prove that for essentially any population density, if random
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(a) Rank-based friendship on LiveJournal (b) Rank-based friendship: East and West coasts

Figure 20.10: The probability of a friendship as a function of geographic rank on the blogging
site LiveJournal. (Image from [273].)

links are constructed using rank-based friendship with exponent 1, the resulting network

allows for efficient decentralized search with high probability. In addition to generalizing the

inverse-square result for the grid, this result has a nice qualitative summary: to construct

a network that is efficiently searchable, create a link to each node with probability that is

inversely proportional to the number of closer nodes.

Now one can go back to LiveJournal and see how well rank-based friendship fits the

distribution of actual social network links: we consider pairs of nodes where one assigns

the other a rank of r, and we ask what fraction f of these pairs are actually friends, as a

function of r. Does this fraction decrease approximately like r−1? Since we’re looking for a

power-law relationship between the rank r and the fraction of edges f , we can proceed as

in Chapter 18: rather than plotting f as a function of r, we can plot log f as a function of

log r, see if we find an approximately straight line, and then estimate the exponent p as the

slope of this line.

Figure 20.10(a) shows this result for the LiveJournal data; we see that much of the body

of the curve is approximately a straight line sandwiched between slopes of −1.15 and −1.2,

and hence close to the optimal exponent of −1. It is also interesting to work separately with

the more structurally homogeneous subsets of the data consisting of West-Coast users and

East-Coast users, and when one does this the exponent becomes very close to the optimal

value of −1. Figure 20.10(b) shows this result: The lower dotted line is what you should see

if the points followed the distribution rank−1, and the upper dotted line is what you should

see if the points followed the distribution rank−1.05.

The plots in Figure 20.10 are thus the conclusion of a sequence of steps in which we

start from an experiment (Milgram’s), build mathematical models based on this experiment

(combining local and long-range links), make a prediction based on the models (the value of

the exponent controlling the long-range links), and then validate this prediction on real data
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v

Figure 20.11: When nodes belong to multiple foci, we can define the social distance between
two nodes to be the smallest focus that contains both of them. In the figure, the foci are
represented by ovals; the node labeled v belongs to five foci of sizes 2, 3, 5, 7, and 9 (with the
largest focus containing all the nodes shown).

(from LiveJournal, after generalizing the model to use rank-based friendship). This is very

much how one would hope for such an interplay of experiments, theories, and measurements

to play out. It is also a bit striking to see the close alignment of theory and measurement

in this particular case, since the predictions come from a highly simplified model of the

underlying social network, yet these predictions are approximately borne out on data arising

from real social networks.

Indeed, there remains a mystery at the heart of these findings. While the fact that the

distributions are so close does not necessarily imply the existence of any particular organizing

mechanism [69], it is still natural ask why real social networks have arranged themselves in

a pattern of friendships across distance that is close to optimal for forwarding messages to

far-away targets. Furthermore, whatever the users of LiveJournal are doing, they are not

explicitly trying to run versions of the Milgram experiment — if there are dynamic forces

or selective pressures driving the network toward this shape, they must be more implicit,

and it remains a fascinating open problem to determine whether such forces exist and how

they might operate. One intriguing approach to this question has been suggested by Oskar

Sandberg, who analyzes a model in which a network constantly re-wires itself as people

perform decentralized searches in it. He shows that over time, the network essentially begins

to “adapt” to the pattern of searches; eventually the searches become more efficient, and the

arrangement of the long-range links begins to approach a structure that can be approximated

by rank-based friendship with the optimal exponent [356].
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Figure 20.12: The pattern of e-mail communication among 436 employees of Hewlett
Packard Research Lab is superimposed on the official organizational hierarchy, show-
ing how network links span different social foci [6]. (Image from http://www-
personal.umich.edu/ ladamic/img/hplabsemailhierarchy.jpg)

Social Foci and Social Distance. When we first discussed the Watts-Strogatz model in

Section 20.2, we noted that the grid of nodes was intended to serve as a stylized notion of

similarity among individuals. Clearly it is most easily identified with geographic proximity,

but subsequent models have explored other types of similarity and the ways in which they

can produce small-world effects in networks [247, 403].

The notion of social foci from Chapter 4 provides a flexible and general way to produce

models of networks exhibiting both an abundance of short paths and efficient decentralized

search. Recall that a social focus is any type of community, occupational pursuit, neighbor-

hood, shared interest, or activity that serves to organize social life around it [160]. Foci are

a way of summarizing the many possible reasons that two people can know each other or

become friends: because they live on the same block, work at the same company, frequent

the same cafe, or attend the same kinds of concerts. Now, two people may have many possi-

ble foci in common, but all else being equal, it is likely that the shared foci with only a few

members are the strongest generators of new social ties. For example, two people may both

work for the same thousand-person company and live in the same million-person city, but it

is the fact that they both belong to the same twenty-person literacy tutoring organization

that makes it most probable they know each other. Thus, a natural way to define the social
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distance between two people is to declare it to be size of the smallest focus that includes both

of them.

In the previous sections, we’ve used models that build links in a social network from an

underlying notion of geographic distance. Let’s consider how this might work with this more

general notion of social distance. Suppose we have a collection of nodes, and a collection

of foci they belong to — each focus is simply a set containing some of the nodes. We let

dist(v, w) denote the social distance between nodes v and w as defined in terms of shared

foci: dist(v, w) is the size of the smallest focus that contains both v and w. Now, following

the style of earlier models, let’s construct a link between each pair of nodes v and w with

probability proportional to dist(v, w)−p. For example, in Figure 20.11, the node labeled v

construct links to three other nodes at social distances 2, 3, and 5. One can now show, subject

to some technical assumptions on the structure of the foci, that when links are generated

this way with exponent p = 1, the resulting network supports efficient decentralized search

with high probability [247].

There are aspects of this result that are similar to what we’ve just seen for rank-based

friendship. First, as with rank-based friendship, there is a simple description of the underly-

ing principle: when nodes link to each other with probability inversely proportional to their

social distance, the resulting network is efficiently searchable. And second, the exponent

p = 1 is again the natural generalization of the inverse-square law for the simple grid model.

To see why, suppose we take a grid of nodes and define a set of foci as follows: for each loca-

tion v on the grid, and each possible radius r around that location, there is a focus consisting

of all nodes who are within distance r of v. (Essentially, these are foci consisting of everyone

who live together in neighborhoods and locales of various sizes.) Then for two nodes who are

a distance d apart, their smallest shared focus has a number of nodes proportional to d2, so

this is their social distance. Thus, linking with probability proportional to d−2 is essentially

the same as linking with probability inversely proportional to their social distance.

Recent studies of who-talks-to-whom data has fit this model to social network structures.

In particular, Adamic and Adar analyzed a social network on the employees of Hewlett

Packard Research Lab that we discussed briefly in Chapter 1 connecting two people if they

exchanged e-mail at least six times over a three-month period [6]. (See Figure 20.12.) They

then defined a focus for each of the groups within the organizational structure (i.e. a group

of employees all reporting a common manager). They found that the probability of a link

between two employees at social distance d within the organization scaled proportionally

to d−3/4. In other words, the exponent on the probability for this network is close to, but

smaller than, the best exponent for making decentralized search within the network efficient.

These increasingly general models thus provide us with a way to look at social-network

data and speak quantitatively about the ways in which the links span different levels of

distance. This is important not just for understanding the small-world properties of these



638 CHAPTER 20. THE SMALL-WORLD PHENOMENON

networks, but also more generally for the ways in which homophily and weak ties combine

to produce the kinds of structures we find in real networks.

Search as an Instance of Decentralized Problem-Solving. While the Milgram ex-

periment was designed to test the hypothesis that people are connected by short paths in

the global social network, our discussion here shows that it also served as an empirical study

of people’s ability to collectively solve a problem — in this case, searching for a path to a

far-away individual — using only very local information, and by communicating only with

their neighbors in the social network. In addition to the kinds of search methods discussed

here, based on aiming as closely to the target as possible in each step, researchers have also

studied the effectiveness of path-finding strategies in which people send messages to friends

who have a particularly large number of edges (on the premise that they will be “better

connected” in general) [6, 7], as well as strategies that explicitly trade off the proximity of a

person against their number of edges [365].

The notion that social networks can be effective at this type of decentralized problem-

solving is an intriguing and general premise that applies more broadly than just to the

problem of path-finding that Milgram considered. There are many possible problems that

people interacting in a network could try solving, and it is natural to suppose that their

effectiveness will depend both on the difficulty of the problem being solved and on the

network that connects them. There is a long history of experimental interest in collective

problem-solving [46], and indeed one way to view the bargaining experiments described in

Chapter 12 is as an investigation of the ability of a group of people to collectively find a

mutually compatible set of exchanges when their interaction is constrained by a network.

Recent experiments have explored this issue for a range of basic problems, across multiple

kinds of network structures [233, 234], and there is also a growing line of work in the design

of systems that can exploit the power of collective human problem-solving by very large

on-line populations [396, 397].

20.6 Core-Periphery Structures and Difficulties in De-
centralized Search

In the four decades since the Milgram experiment, the research community has come to

appreciate both the robustness and the delicacy of the “six degrees” principle. As we noted in

Chapter 2, many studies of large-scale social network data have confirmed the pervasiveness

of very short paths in almost every setting. On the other hand, the ability of people to find

these paths from within the network is a subtle phenomenon: it is striking that it should

happen at all, and the conditions that facilitate it are not fully understood.

As Judith Kleinfeld has noted in her recent critique of the Milgram experiment [252],
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Figure 20.13: The core-periphery structure of social networks.

the success rate at finding targets in recreations of the experiment has often been much

lower than it was in the original work. Much of the difficulty can be explained by lack of

participation: many people, asked to forward a letter as part of the experiment, will simply

throw it away. This is consistent with lack of participation in any type of survey or activity

carried out by mail; assuming this process is more or less random, it has a predictable effect

on the results, and one can correct for it [130, 409].

But there are also more fundamental difficulties at work, pointing to questions about

large social networks that may help inform a richer understanding of network structure. In

particular, Milgram-style search in a network is most successful when the target person is

affluent and socially high-status. For example, in the largest small-world experiment to date

[130], 18 different targets were used, drawn from a wide range of backgrounds. Completion

rates to all targets were small, due to lack of participation in the e-mail based forwarding of

messages, but they were highest for targets who were college professors and journalists, and

particularly small for low-status targets.

Core-Periphery Structures. This wide variation in the success rates of search to differ-

ent targets does not simply arise from variations in individual attributes of the respective

people — it is based on the fact that social networks are structured to make high-status

individuals much easier to find than low-status ones. Homophily suggests that high-status
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people will mainly know other high-status people, and low-status people will mainly know

other low-status people, but this does not imply that the two groups occupy symmetric or

interchangeable positions in the social network. Rather, large social networks tend to be

organized in what is called a core-periphery structure [71], in which the high-status people

are linked in a densely-connected core, while the low-status people are atomized around the

periphery of the network. Figure 20.13 gives a schematic picture of such a structure. High-

status people have the resources to travel widely; to meet each other through shared foci

around clubs, interests, and educational and occupational pursuits; and more generally to

establish links in the network that span geographic and social boundaries. Low-status people

tend to form links that are much more clustered and local. As a result, the shortest paths

connecting two low-status people who are geographically or socially far apart will tend to go

into the core and then come back out again.

All this has clear implications for people’s ability to find paths to targets in the network.

In particular, it indicates some of the deep structural reasons why it is harder for Milgram-

style decentralized search to find low-status targets than high-status targets. As you move

toward a high-status target, the link structure tends to become richer, based on connections

with an increasing array of underlying social reasons. In trying to find a low-status target,

on the other hand, the link structure becomes structurally more impoverished as you move

toward the periphery.

These considerations suggest an opportunity for richer models that take status effects

more directly into account. The models we have seen capture the process by which people

can find each other when they are all embedded in an underlying social structure, and

motivated to continue a path toward a specific destination. But as the social structure

begins to fray around the periphery, an understanding of how we find our way through it

has the potential to shed light not just on the networks themselves, but on the way that

network structure is intertwined with status and the varied positions that different groups

occupy in society as a whole.

20.7 Advanced Material: Analysis of Decentralized Search

In Section 20.4, we gave some basic intuition for why an inverse-square distribution of links

with distance makes effective decentralized search possible. Even given this way of thinking

about it, however, it still requires further work to really see why search succeeds with this

distribution. In this section, we describe the complete analysis of the process [246].

To make the calculations a bit simpler, we vary the model in one respect: we place the

nodes in one dimension rather than two. In fact, the argument is essentially the same no

matter how many dimensions the nodes are in, but one dimension makes things the cleanest

(even if not the best match for the actually geographic structure of a real population). It
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(a) A set of nodes arranged in a ring.
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(b) A ring augmented with random long-
range links.

Figure 20.14: The analysis of decentralized search is a bit cleaner in one dimension than
in two, although it is conceptually easy to adapt the arguments to two dimensions. As a
result, we focus most of the discussion on a one-dimensional ring augmented with random
long-range links.

turns out, as we will argue more generally later in this section, that the best exponent for

search is equal to the dimension, so in our one-dimensional analysis we will be using an

exponent of q = 1 rather than q = 2. At the end, we will discuss the minor ways in which

the argument needs to be adapted in two or higher dimensions.

We should also mention, recalling the discussion earlier in the chapter, that there is a

second fundamental part of this analysis as well — showing that this choice of q is in fact the

best for decentralized search in the limit of increasing network size. At the end, we sketch

why this is true, but the full details are beyond what we will cover here.

A. The Optimal Exponent in One Dimension

Here, then, is the model we will be looking at. A set of n nodes are arranged on a one-

dimensional ring as shown in Figure 20.14(a), with each node connected by directed edges

to the two others immediately adjacent to it. Each node v also has a single directed edge

to some other node on the ring; the probability that v links to any particular node w is

proportional to d(v, w)−1, where d(v, w) is their distance apart on the ring. We will call the

nodes to which v has an edge its contacts: the two nodes adjacent to it on the ring are its

local contacts, and the other one is its long-range contact. The overall structure is thus a ring

that is augmented with random edges, as shown in Figure 20.14(b). Again, this is essentially
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Figure 20.15: In myopic search, the current message-holder chooses the contact the lies
closest to the target (as measured on the ring), and it forwards the message to this contact.

just a one-dimensional version of the grid with random edges that we saw in Figure 20.5.1

Myopic Search. Let’s choose a random start node s and a random target node t on this

augmented ring network. The goal, as in the Milgram experiment, is to forward a message

from the start to the target, with each intermediate node on the way only knowing the

locations of its own neighbors, and the location of t, and nothing else about the full network.

The forwarding strategy that we analyze, which works well on the ring when q = 1, is a

simple technique that we call myopic search: when a node v is holding the message, it passes

it to the contact that lies as close to t on the ring as possible. Myopic search can clearly

be performed even by nodes that know nothing about the network other than the locations

of their friends and the location of t, and it is a reasonable approximation to the strategies

used by most people in Milgram-style experiments [240].

For example, Figure 20.15 shows the myopic path that would be constructed if we chose

a as the start node and i as the target node in the network from Figure 20.14(b).

1. Node a first sends the message to node d, since among a’s contacts p, b, and d, node

d lies closest to i on the ring.

1We could also analyze a model in which nodes have more outgoing edges, but this only makes the search
problem easier; our result here will show that even when each node has only two local contacts and a single
long-range contact, search can still be very efficient.
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Figure 20.16: We analyze the progress of myopic search in phases. Phase j consists of the
portion of the search in which the message’s distance from the target is between 2j and 2j+1.

2. Then d passes the message to its local contact e, and e likewise passes the message to

its local contact f , since the long-range contacts of both d and e leaad away from i on

the ring, not closer to it.

3. Node f has a long-range contact h that proves useful, so it passes it to h. Node h

actually has the target as a local contact, so it hands it directly to i, completing the

path in five steps.

Notice that this myopic path is not the shortest path from a to i. If a had known that its

friend b in fact had h as a contact, it could have handed the message to b, thereby taking

the first step in the three-step a-b-h-i path. It is precisely this lack of knowledge about the

full network structure that prevents myopic search from finding the true shortest path in

general.

Despite this, however, we will see next that in expectation, myopic search finds paths

that are surprisingly short.
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Analyzing Myopic Search: The Basic Plan. We now have a completely well-defined

probabilistic question to analyze, as follows. We generate a random network by adding

long-range edges to a ring as above. We then choose a random start node s and random

target node t in this network. The number of steps required by myopic search is now a

random variable X, and we are interested in showing that E [X], the expected value of X,

is relatively small.

Our plan for putting a bound on the expected value of X follows the idea contained in

Milgram’s picture from Figure 20.4: we track how long it takes to the message to reduce its

distance by factors of two as it closes in on the target. Specifically, as the message moves

from s to t, we’ll say that it’s in phase j of the search if its distance from the target is

between 2j and 2j+1. See Figure 20.16 for an illustration of this. Notice that the number of

different phases is at most log2 n — that is, the number of doublings needed to go from 1 to

n. (In what follows, we will drop the base of the logarithm and simply write log n to denote

log2 n.)

We can write X, the number of steps taken by the full search, as

X = X1 + X2 + · · · + Xlog n;

that is, the total time taken by the search is simply the sum of the times taken in each phase.

Linearity of expectation says that the expectation of a sum of random variables is equal to

the sum of their individual expectations, and so we have

E [X] = E [X1 + X2 + · · · + Xlog n] = E [X1] + E [X2] + · · · + E [Xlog n] .

We will now show — and this is the crux of the argument — that the expected value of each

Xj is at most proportional to log n. In this way, E [X] will be a sum of log n terms, each at

most proportional to log n, and so we will have shown that E [X] is at most proportional to

(log n)2.

This will achieve our overall goal of showing that myopic search is very efficient with the

given distribution of links: the full network has n nodes, but myopic search constructs a

path that is exponentially smaller: proportional to the square of log n.

Intermediate Step: The Normalizing Constant In implementing this high-level strat-

egy, the first thing we need to work out is in fact something very basic: we’ve been saying

all along that v forms its long-range link to w with probability proportional to d(v, w)−1, but

what is the constant of proportionality? As in any case when we know a set of probabilities

up to a missing constant of proportionality 1/Z, the value of Z is here simply the sum of

d(v, u)−1 over all nodes u #= v on the ring. Dividing everything down by this normalizing

constant Z, the probability of v linking to w is then equal to 1
Z d(v, w)−1.

To work out the value of Z, we note that there are two nodes at distance 1 from v, two

at distance 2, and more generally two at each distance d up to n/2. Assuming n is even,
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Figure 20.17: Determining the normalizing constant for the probability of links involves
evaluating the sum of the first n/2 reciprocals. An upper bound on the value of this sum
can be determined from the area under the curve y = 1/x.

there is also a single node at distance n/2 from v — the node diametrically opposite it on

the ring. Therefore, we have

Z ≤ 2

(
1 +

1

2
+

1

3
+

1

4
+ · · · +

1

n/2

)
. (20.1)

The quantity inside parentheses on the right is a common expression in probabilistic calcu-

lations: the sum of the first k reciprocals, for some k, in this case n/2. To put an upper

bound on its size, we can compare it to the area under the curve y = 1/x, as shown in

Figure 20.17. As that figure indicates, a sequence of rectangles of unit widths and heights

1/2, 1/3, 1/4, . . . , 1/k fits under the curve y = 1/x as x ranges from 1 to k. Combined with

a single rectangle of height and width 1, we see that

1 +
1

2
+

1

3
+

1

4
+ · · · +

1

k
≤ 1 +

∫ k

1

1

x
dx = 1 + ln x.

Plugging in k = n/2 to the expression on the right-hand side of inequality (20.1) above, we

get

Z ≤ 1 + ln(n/2).

For simplicity, we’ll use a slightly weaker bound on Z, which follows simply from the obser-

vation that lnx ≤ log2 x:

Z ≤ 1 + log2(n/2) = 1 + (log2 n)− (log2 2) = log2 n.

Thus, we have now have an expression for the actual probability that v links to w (including

its constant of proportionality): the probability v links to w is

1

Z
d(v, w)−1 ≥ 1

log n
d(v, w)−1.
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Figure 20.18: At any given point in time, the search is in some phase j, with the message
residing at a node v at distance d from the target. The phase will come to an end if v’s long-
range contact lies at distance ≤ d/2 from the target t, and so arguing that the probability
of this event is large provides a way to show that the phase will not last too long.

Analyzing the Time Spent in One Phase of Myopic Search. Finally, we come to

the last and central step of the analysis: showing that the time spent by the search in any

one phase is not very large. Let’s choose a particular phase j of the search, when the message

is at a node v whose distance to the target t is some number d between 2j and 2j+1. (See

Figure 20.18 for an illustration of all this notation in context.) The phase will come to an

end once the distance to the target decreases below 2j, and we want to show that this will

happen relatively quickly.

One way for the phase to come to an end immediately would be for v’s long-range contact

w to be at distance ≤ d
2 from t. In this case, v would necessarily be the last node to belong

to phase j. So let’s show that this immediate halving of the distance in fact happens with

reasonably large probability.

The argument is pictured in Figure 20.19. Let I be the set of nodes at distance ≤ d
2 from

t; this is where we hope v’s long-range contact will lie. There are d + 1 nodes in I: this

includes node t itself, and d/2 nodes consecutively on each side of it. Each node w in I has
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Figure 20.19: Showing that, with reasonable probability, v’s long-range contact lies within
half the distance to the target.

distance at most 3d/2 from v: the farthest one is on the “far side” of t from v, at distance

d + d/2. Therefore, each node w in I has probability at least

1

log n
d(v, w)−1 ≥ 1

log n
· 1

3d/2
=

2

3d log n
.

of being the long-range contact of v. Since there are more than d nodes in I, the probability

that one of them is the long-range contact of v is at least

d · 2

3d log n
=

2

3 log n
.

If one of these nodes is the long-range contact of v, then phase j ends immediately in this

step. Therefore, in each step that it proceeds, phase j has a probability of at least 2/(3 log n)

of coming to an end, independently of what has happened so far. To run for at least i steps,
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phase j has to fail to come an end i− 1 times in a row, and so the probability that phase j

runs for at least i steps is at most
(

1− 2

3 log n

)i−1

.

Now we conclude by just using the formula for the expected value of a random variable:

E [Xj] = 1 · Pr [Xj = 1] + 2 · Pr [Xj = 2] + 3 · Pr [Xj = 3] + · · · (20.2)

There is a useful alternate way to write this: notice that in the expression

Pr [Xj ≥ 1] + Pr [Xj ≥ 2] + Pr [Xj ≥ 3] + · · · (20.3)

the quantity Pr [Xj = 1] is accounted for once (in the first term only), the quantity Pr [Xj = 2]

is accounted for twice (in the first two terms only), and so forth. Therefore the expressions

in (20.2) and (20.3) are the same thing, and so we have

E [Xj] = Pr [Xj ≥ 1] + Pr [Xj ≥ 2] + Pr [Xj ≥ 3] + · · · (20.4)

Now, we’ve just argued above that

Pr [Xj ≥ i] ≤
(

1− 2

3 log n

)i−1

,

and so

E [Xj] ≤ 1 +

(
1− 2

3 log n

)
+

(
1− 2

3 log n

)2

+

(
1− 2

3 log n

)3

+ · · ·

The right-hand side is a geometric sum with multiplier

(
1− 2

3 log n

)
, and so it converges

to
1

1−
(
1− 2

3 log n

) =
3

2
log n.

Thus we have

E [Xj] ≤
3

2
log n.

And now we’re done. E [X] is a sum of the log n terms E [X1] + E [X2] + · · · + E [Xlog n] ,

and we’ve just argued that each of them is at most 3
2 log n. Therefore, E [X] ≤ 3

2(log n)2, a

quantity proportional to (log n)2 as we wanted to show.

B. Higher Dimensions and Other Exponents

Using the analysis we’ve just completed, we now discuss two further issues. First, we sketch

how it can be used to analyze networks built by adding long-range contacts to nodes arranged

in two dimensions. Then we show how, in the limit of increasing network size, search is more

efficient when q is equal to the underlying dimension than when it is equal to any other

value.
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Figure 20.20: The analysis for the one-dimensional ring can be carried over almost directly
to the two-dimensional grid. In two dimensions, with the message at a current distance d
from the target t, we again look at the set of nodes within distance d/2 of t, and argue that
the probability of entering this set in a single step is reasonably large.

The Analysis in Two Dimensions. It’s not hard to adapt our analysis for the one-

dimensional ring directly to the case of the two-dimensional grid. Essentially, we only used

the fact that we were in one dimension in two distinct places in the analysis. First, we used

it when we determined the normalizing constant Z. Second, and in the end most crucially,

we used it to argue that there were at least d nodes within distance d/2 of the target t.

This factor of d canceled the d−1 in the link probability, allowing us to conclude that the

probability of halving the distance to the target in any given step was at least proportional

to 1/(log n), regardless of the value of d.

At a qualitative level, this last point is the heart of the analysis: with link probability

d−1 on the ring, the probability of linking to any one node exactly offsets the number of

nodes close to t, and so myopic search makes progress at every possible distance away from

the target.

When we go to two dimensions, the number of nodes within distance d/2 of the target
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will be proportional to d2. This suggests that to get the same nice cancellation property,

we should have v link to each node w with probability proportional to d(v, w)−2, and this

exponent −2 is what we will use.

With the above ideas in mind, and with this change in the exponent to −2, the analysis

for two dimensions is almost exactly the same as what we just saw for the one-dimensional

ring. First, while we won’t go through the calculations here, the normalizing constant Z is

still proportional to log n when the probability of v linking to w is proportional to d(v, w)−2.

We then consider log n different phases as before; and as depicted in Figure 20.20, we consider

the probability that at any given moment, the current message-holder v has a long-range

contact w that halves the distance to the target, ending the phase immediately. Now we

use the calculation foreshadowed in the previous paragraph: the number of nodes within

distance d/2 of the target is proportional to d2, and the probability that v links to each is

proportional to 1/(d2 log n). Therefore, the probability that the message halves its distance

to the target in this step is at least d2/(d2 log n) = 1/(log n), and the rest of the analysis

then finishes as before.

A similarly direct adaptation of the analysis shows that decentralized search is efficient

for networks built by adding long-range contacts to grids in D > 2 dimensions, when the

exponent q is equal to D.

Why Search is Less Efficient with Other Exponents. Finally, let’s sketch why de-

centralized search is less efficient when the exponent is anything else. For concreteness, we’ll

focus on why search doesn’t work well when q = 0 — the original Watts-Strogatz model

when long-range links are chosen uniformly at random. Also, we’ll talk again about the

one-dimensional ring rather than the two-dimensional grid, since things are a bit cleaner in

one dimension, although again the analysis in two dimensions is essentially the same.

The key idea, as with the “good” exponent q = 1, is to consider the set of all nodes

within some distance of the target t. But whereas in the case of q = 1 we wanted to argue

that it is easy to enter smaller and smaller sets centered around t, here we want to identify

a set of nodes centered at t that is somehow “impenetrable” — a set that is very hard for

the search to enter.

In fact, it is not difficult to do this. The basic idea is depicted in Figure 20.21; we sketch

how the argument works, but without going into all the details. (The details can be found

in [246].) Let K be the set of all nodes within distance less than
√

n of the target t. Now,

with high probability, the starting point of the search lies outside K. Because long-range

contacts are created uniformly at random (since q = 0), the probability that any one node

has a long-range contact inside K is equal to the size of K divided by n: so it less than

2
√

n/n = 2/
√

n. Therefore, any decentralized search strategy will need at least
√

n/2 steps

in expectation to find a node with a long-range contact in K. On the other hand, as long



20.7. ADVANCED MATERIAL: ANALYSIS OF DECENTRALIZED SEARCH 651

t

s

v

distancedistance

It takes a long-time for the search to find 

a long-range link into K, and crossing K 

via local contacts is slow too.

K

nn

Figure 20.21: To show that decentralized search strategies require large amounts of time
with exponent q = 0, we argue that it is difficult for the search to cross the set of

√
n nodes

closest to the target. Similar arguments hold for other exponents q < 1.

as it doesn’t find a long-range link leading into K, it can’t reach the target in less than√
n steps, since it would take this long to “walk” step-by-step through K using only the

connections among local contacts. From this, one can show that the expected time for any

decentralized search strategy to reach t must be at least proportional to
√

n.

There are similar arguments for every other exponent q #= 1. When q is strictly between 0

and 1, a version of the argument above works, with a set K centered at t whose width depends

on the value of q. And when q > 1, decentralized search is inefficient for a different reason:

since even the long-range links are relatively short, it takes a long time for decentralized

search to find links that span sufficiently long distances. This makes it hard to quickly

traverse the distance from the starting node to the target.

Overall, one can show that for every exponent q #= 1, there is a constant c > 0 (depending

on q), so that it takes at least proportional to nc steps in expectation for any decentralized
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search strategy to reach the target in a network generated with exponent q. So in the limit,

as n becomes large, decentralized search with exponent q = 1 requires time that grows like

a polynomial in log n, while decentralized search at any other exponent requires a time that

grows like a polynomial in n — exponentially worse.2 The exponent q = 1 on the ring —

or q = 2 in the plane — is optimally balanced between producing networks that are “too

random” for search, and those that are not random enough.

20.8 Exercises

1. In the basic “six degrees of separation” question, one asks whether most pairs of people

in the world are connected by a path of at most six edges in the social network, where

an edge joins any two people who know each other on a first-name basis.

Now let’s consider a variation on this question. Suppose that we consider the full

population of the world, and suppose that from each person in the world we create a

directed edge only to their ten closest friends (but not to anyone else they know on a

first-name basis). In the resulting “closest-friend” version of the social network, is it

possible that for each pair of people in the world, there is a path of at most six edges

connecting this pair of people? Explain.

2. In the basic “six degrees of separation” question, one asks whether most pairs of people

in the world are connected by a path of at most six edges in the social network, where

an edge joins any two people who know each other on a first-name basis.

Now let’s consider a variation on this question. For each person in the world, we ask

them to rank the 30 people they know best, in descending order of how well they know

them. (Let’s suppose for purposes of this question that each person is able to think of

30 people to list.) We then construct two different social networks:

(a) The “close-friend” network: from each person we create a directed edge only to

their ten closest friends on the list.

(b) The “distant-friend” network: from each person we create a directed edge only to

the ten people listed in positions 21 through 30 on their list.

Let’s think about how the small-world phenomenon might differ in these two networks.

In particular, let C be the average number of people that a person can reach in six

steps in the close-friend network, and let D be the average number of people that a

person can reach in six steps in the distant-friend network (taking the average over all

people in the world).

2Of course, it can take very large values of n for this distinction to become truly pronounced; recall
Figure 20.6, which showed the results of simulations on networks with 400 million nodes.
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When researchers have done empirical studies to compare these two types of networks

(the exact details often differ from one study to another), they tend to find that one

of C or D is consistently larger than the other. Which of the two quantities, C or D,

do you expect to be larger? Give a brief explanation for your answer.

3. Suppose you’re working with a group of researchers studying social communication

networks, with a particular focus on the distances between people in such networks,

and the broader implications for the small-world phenomenon.

The research group is currently negotiating an agreement with a large mobile phone

carrier to get a snapshot of their “who-calls-whom” graph. Specifically, under a strict

confidentiality agreement, the carrier is offering to provide a graph in which there is

a node representing each of the carrier’s customers, and each edge represents a pair

of people who called each other over a fixed one-year period. (The edges will be

annotated with the number of calls and the time at which each one happened. No

personal identification will be provided with the nodes.)

Recently, the carrier has proposed that instead of providing all the data, they’ll only

provide edges corresponding to pairs of people who called each other at least once a

week on average over the course of the year. (That is, all nodes will be present, but

there will only be edges for pairs of people who talked at least 52 times.) The carrier

understands that this is not the full network, but they would prefer to release less data

and they argue that this will be a good approximation to the full network.

Your research group objects, but the carrier is not inclined to change its position unless

your group can identify specific research findings that are likely to be misleading if

they are drawn from this reduced dataset. The leader of your research group asks

you to prepare a brief response to the carrier, identifying some concrete ways in which

misleading conclusions might be reached from the reduced dataset.

What would you say in your response?


