
Chapter 17

Network Effects

At the beginning of Chapter 16, we discussed two fundamentally different reasons why

individuals might imitate the behavior of others. One reason was based on informational

effects: since the behavior of other people conveys information about what they know, observ-

ing this behavior and copying it (even against the evidence of one’s own private information)

can sometimes be a rational decision. This was our focus in Chapter 16. The other type

of reason was based on direct-benefit effects, also called network effects: for some kinds of

decisions, you incur an explicit benefit when you align your behavior with the behavior of

others. This is what we will consider in this chapter.

A natural setting where network effects arise is in the adoption of technologies where

interaction or compatibility with others is important. For example, when the fax machine

was first introduced as a product, its value to a potential consumer depended on how many

others were also using the same technology. The value of a social-networking or media-

sharing site exhibits the same properties: it’s valuable to the extent that other people are

using it as well. Similarly, a computer operating system can be more useful if many other

people are using it: even if the primary purpose of the operating system itself is not to

interact with others, an operating system with more users will tend to have a larger amount

of software written for it, and will use file formats (e.g. for documents, images, and movies)

that more people can easily read.

Network Effects as Externalities. The effects we are describing here are called positive

externalities. An externality is any situation in which the welfare of an individual is affected

by the actions of other individuals, without a mutually agreed-upon compensation. For

example, the benefit to you from a social networking site is directly related to the total

number of people who use the site. When someone else joins the site, they have increased your
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welfare even though no explicit compensation accounts for this. This is an externality, and

it is positive in the sense that your welfare increases. In this chapter, we will be considering

the consequences of positive externalities due to network effects. In the settings we analyze

here, payoffs depend on the number of others who use a good and not on the details of how

they are connected. In Chapter 19, we will look at the details of network connectivity and

ask how they affect the positive externalities that result.

Notice that we have also seen examples of negative externalities earlier in the book —

these are cases where an externality causes a decrease in welfare. Traffic congestion as dis-

cussed in Chapter 8 is an example in which your use of a (transportation or communication)

network decreases the payoff to other users of the network, again despite the lack of com-

pensation among the affected parties. In the final section of this chapter, we will look at a

direct comparison of positive and negative externalities in more detail.

It’s important, also, to note that not everything is an externality — the key part is

that the effect has to uncompensated. For example, if you drink a can of Diet Coke then

there is one less can of Diet Coke for the rest of the world to consume, so you decrease the

welfare of others by your action. But in this case, in order to drink the can of Diet Coke

you have to pay for it, and if you pay what it costs to make another can of Diet Coke, then

you have exactly compensated the rest of the world for your action. That is, there is no

uncompensated effect, and hence no externality. We explore the interaction of externalities

and compensation further when we discuss property rights in Chapter 24.

17.1 The Economy Without Network Effects

Our canonical setting in this chapter will be the market for a good: we will first consider

how the market functions when there is no network effect — that is, when consumers do not

care how many other users of the good there are — and then we will see how things change

when a network effect is present.

We want to analyze markets with a huge number of potential purchasers, each of whom

is small enough relative to the entire market that he or she can make individual decisions

without affecting the aggregate behavior. For example, each individual considering the

purchase of a loaf of bread does so without worrying about whether her individual decision

— all else remaining the same — will affect the price of bread. (Note that this is different

from worrying about whether decisions made by a large number of people will have an effect,

which they certainly can.) Of course, in real markets the number of consumers is finite, and

each individual decision does have a very, very small effect on the aggregate. But each

purchaser’s impact is so small relative to the market that we can model individuals as not

taking this into account when they make a decision.

Formally, we model the lack of individual effects on the aggregate by representing the
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consumers as the set of all real numbers in the interval strictly between 0 and 1. That is, each

consumer is named by a different real number, and the total mass of consumers is 1. This

naming of the consumers by real numbers will be notationally useful — for example, the set

of consumers with names between 0 and x < 1 represents an x fraction of the population. A

good way to think of this model of consumers is as a continuous approximation to a market

with a very large, but finite, number of consumers; the continuous model will be useful in

various places to avoid having to deal with the explicit effect of any one individual on the

overall population.

Each consumer wants at most one unit of the good; each consumer has a personal intrinsic

interest in obtaining the good that can vary from one consumer to another. When there are

no network effects at work, we model a consumer’s willingness to pay as being determined

entirely by this intrinsic interest. When there are network effects, a consumer’s willingness

to pay is determined by two things:

• intrinsic interest; and

• the number of other people using the good — the larger the user population, the more

she is willing to pay.

Our study of network effects here can be viewed as an analysis of how things change once

this second factor comes into play.

To start understanding this issue, we first consider how a market looks when there are

no network effects.

Reservation Prices. With no network effects, each consumer’s interest in the good is

specified by a single reservation price: the maximum amount she is willing to pay for one

unit of the good. We’ll assume that the individuals are arranged in the interval between 0

and 1 in order of decreasing reservation price, so that if consumer x has a higher reservation

price than consumer y, then x < y. Let r(x) denote the reservation price of consumer x. For

the analysis in this chapter, we will assume that this function r(·) is continuous, and that

no two consumers have exactly the same reservation price — so the function r(·) is strictly

decreasing as it ranges over the interval from 0 to 1.

Suppose that the market price for a unit of the good is p: everyone who wants to buy

the good can buy it at price p, and no units are offered for sale at a price above or below

p. At price p, everyone whose reservation price is at least p will actually buy the good, and

everyone whose reservation price is below p will not buy it. Clearly at a price of r(0) or

more, no one will buy the good; and at a price of r(1) or less, everyone will buy the good.

So let’s consider the interesting region for the price p, when it lies strictly between r(1) and

r(0). In this region, there is some unique number x with the property that r(x) = p: as
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Figure 17.1: When there are no network efforts, the demand for a product at a fixed market
price p can be found by locating the point where the curve y = r(x) intersects the horizontal
line y = p.

Figure 17.1 illustrates, since r(·) is a continuous function that strictly decreases, it must

cross the horizontal line y = p somewhere.

This means that all consumers between 0 and x buy the product, and all consumers

above x don’t — so an x fraction of the population buys the product. We can do this for

every price p: there is an x depending on p that specifies the fraction of the population that

will purchase at price p. This way of reading the relation between price and quantity (for

any price the quantity that will be demanded) is usually called the (market) demand for the

good, and it is a very useful way to think of the relation between the price and the number

of units purchased.1

The Equilibrium Quantity of the Good. Let’s suppose that this good can be produced

at a constant cost of p∗ per unit, and that, as is the case for consumers, there are many

potential producers of the good so that none of them is large enough to be able to influence

the market price of the good. Then, in aggregate, the producers will be willing to supply

any amount of the good at a price of p∗ per unit, and none of the good at any price below

p∗. Moreover the assumption of a large number of potential producers who can create new

1In the language of microeconomics, the function r(·) describes the inverse demand function. The inverse
of r(·), giving x in terms of p, is the demand function.
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Figure 17.2: When copies of a good can be produced at a constant cost p∗ per unit, the
equilibrium quantity consumed will be the number x∗ for which r(x∗) = p∗.

copies of the good at a constant cost of p∗ implies that the price cannot remain above p∗,

since any profit to a producer would be driven to zero by competition from other producers.

Thus, we can assume a market price of p∗, regardless of the number of units of the good

produced.2 As above, cases in which p∗ is above r(0) or below r(1) are not particularly

inerteresting, since then either everyone or no one buys the good. Therefore, we assume that

r(0) > p∗ > r(1).

To complete the picture of how the market operates without network effects, we now

determine the supply of the good. Since p∗ is between the highest and lowest reservation

prices, we can find an x∗ between 0 and 1 so that r(x∗) = p∗. We call x∗ the equilibrium

quantity of the good, given the reservation prices and the cost p∗. Figure 17.2 revisits

Figure 17.1, including the cost p∗ and the equilibrium quantity x∗.

Notice the sense in which x∗ represents an equilibrium in the population’s consumption

of the good. If less than an x∗ fraction of the population purchased the good, there would

be consumers who have not purchased but who would have an incentive to do so, because

of reservation prices above p∗. In other words, there would be “upward pressure” on the

consumption of the product, since there is a portion of the population that would not have

2Continuing with the microeconomic language, this is the long-run competitive supply for any good
produced by a constant-cost industry.
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purchased but wished they had. On the other hand, if more than an x∗ fraction of the

population purchased the good, there would be consumers who had purchased the good

but wished they had not, because of reservation prices below p∗. In this case, we’d have

“downward pressure” on the consumption of the good.

One attractive feature of this equilibrium is that it is socially optimal (as defined in

Chapter 6). To see why, let’s consider the social welfare of the allocation, which we can think

of as the difference between the total reservation prices of the consumers who receive a copy

of the good and the total cost of producing the corresponding quantity of the good. Now,

if society were going to produce some volume x of the good, and give it to an x fraction

of the population, then social welfare would be maximized by giving it to all consumers

between 0 and x, since they correspond to the x fraction of the population that values the

good the most. Which value of x would be the best choice? Since the contribution of a

consumer x′ to the social welfare is the difference r(x′) − p∗, we can think of the social

welfare, when consumers 0 through x get copies of the good, as the (signed) area between

the curve y = r(x) and the horizontal line y = p∗. It’s signed in the sense that portions of

the curve y = r(x) that drop below y = p∗ contribute negatively to the area. Given this,

we’d want to choose x so that we collect all the positive area between y = r(x) and y = p∗,

and none of the negative area. This is achieved by choosing x to be the equilibrium x∗.

Hence the equilibrium quantity x∗ is socially optimal.

We now introduce network effects; we’ll see that this causes several important features

of the market to change in fundamental ways.

17.2 The Economy with Network Effects

In this section, we discuss a model for network effects in the market for a good. We will

follow a general approach suggested by Katz, Shapiro, and Varian [232, 363]; see also the

writings of Brian Arthur [25, 27] for influential early discussions of these ideas.

With network effects, a potential purchaser takes into account both her own reservation

price and the total number of users of the good. A simple way to model this is to say that

there are now two functions at work: when a z fraction of the population is using the good,

the reservation price of consumer x is equal to r(x)f(z), where r(x) as before is the intrinsic

interest of consumer x in the good, and f(z) measures the benefit to each consumer from

having a z fraction of the population use the good. This new function f(z) is increasing

in z: it controls how much more valuable a product is when more people are using it. The

multiplicative form r(x)f(z) for reservation prices means that those who place a greater

intrinsic value on the good benefit more from an increase in the fraction of the population

using the good than do those who place a smaller intrinsic value on the good.

For now, in keeping with the motivation from communication technology and social
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media, we will assume that f(0) = 0: if no one has purchased the good no one is willing to

pay anything for the good. In Section 17.6 we will consider versions of the model where f(0)

is not 0. We will also assume that f is a continuous function. Finally, to make the discussion

a bit simpler, we will assume that r(1) = 0. This means that as we consider consumers x

tending to 1 (the part of the population least interested in purchasing), their willingness to

pay is converging to 0.3

Since a consumer’s willingness to pay depends on the fraction of the population using

the good, each consumer needs to predict what this fraction will be in order to evaluate

whether to purchase. Suppose that the price of the good is p∗, and that consumer x expects

a z fraction of the population will use the good. Then x will want to purchase provided that

r(x)f(z) ≥ p∗.

We begin by considering what happens in the case when all consumers make perfect

predictions about the number of users of the good; after this, we will then consider the

population-level dynamics that are caused by imperfect predictions.

Equilibria with Network Effects. What do we have in mind, in the context of the

current discussion, when we suppose that consumers’ predictions are perfect? We mean

that the consumers form a shared expectation that the fraction of the population using

of the product is z, and if each of them then makes a purchasing decision based on this

expectation, then the fraction of people who actually purchase is in fact z. We call this a

self-fulfilling expectations equilibrium for the quantity of purchasers z: if everyone expects

that a z fraction of the population will purchase the product, then this expectation is in turn

fulfilled by people’s behavior.

Let’s consider what such an equilibrium value of z looks like, in terms of the price p∗ > 0.

First of all, if everyone expects a z = 0 fraction of the population to purchase, then the

reservation price of each consumer x is r(x)f(0) = 0, which is below p∗. Hence no one will

want to purchase, and the shared expectation of z = 0 has been fulfilled.

Now let’s consider a value of z strictly between 0 and 1. If exactly a z fraction of the

population purchases the good, which set of individuals does this correspond to? Clearly

if consumer x′ purchases the good and x < x′, then consumer x will as well. Therefore,

the set of purchasers will be precisely the set of consumers between 0 and z. What is the

price p∗ at which exactly these consumers want to purchase, and no one else? The lowest

reservation price in this set will be consumer z, who — because of the shared expectation

that a z fraction of the population will purchase — has a reservation price of r(z)f(z). In

order for exactly this set of consumers, and no one else, to purchase the good, we must have

p∗ = r(z)f(z).

3The assumption that r(1) = 0 isn’t necessary for our qualitative results, but it avoids various additional
steps later on.
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Figure 17.3: Suppose there are network effects and f(0) = 0, so that the good has no value to
people when no one is using it. In this case, there can be multiple self-fulfilling expectations
equilibria: at z = 0, and also at the points where the curve r(z)f(z) crosses the horizontal
line at height p∗.

We can summarize this as follows:

If the price p∗ > 0 together with the quantity z (strictly between 0 and 1) form a

self-fulfilling expectations equilibrium, then p∗ = r(z)f(z).

This highlights a clear contrast with the model of the previous section, in which network

effects were not present. There, we saw that in order to have more of the good sold, the price

has to be lowered — or equivalently, at high prices the number of units of the good that

can be sold is smaller. This follows directly from the fact that the equilibrium quantity x∗

without network effects is governed by p∗ = r(x∗), and r(x) is decreasing in x. The market

for a good with network effects is more complicated, since the amount of the good demanded

by consumers depends on how much they expect to be demanded — this leads to the more

complex equation p∗ = r(z)f(z) for the equilibrium quantity z. Under our assumption that

f(0) = 0, we’ve seen that one equilibrium with network effects occurs at price p∗ and z = 0:

Producers are willing to supply a zero quantity of the good, and since no one expects the

good to be used, none of it is demanded either.

A Concrete Example. To find whether other equilibria exist, we need to know the form

of the functions r(·) and f(·) in order to analyze the equation p∗ = r(z)f(z). To show how

this works, let’s consider a concrete example in which r(x) = 1 − x and f(z) = z. In this

case, r(z)f(z) = z(1 − z), which has a parabolic shape as shown in Figure 17.3: it is 0 at
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z = 0 and z = 1, and it has a maximum at z = 1
2 , when it takes the value 1

4 . Of course, in

general the functions r(·) and f(·) need not look exactly like this example, but typically we

expect to see something like the shape displayed in Figure 17.3.

Continuing with this concrete example, we can now work out the set of equilibria exactly.

If p∗ > 1
4 , then there is no solution to p∗ = z(1−z) (since the right-hand side has a maximum

value of 1
4 , at z = 1

2), and so the only equilibrium is when z = 0. This corresponds to a good

that is simply too expensive, and so the only equilibrium is when everyone expects it not to

be used.

On the other hand, when p∗ is between 0 and 1
4 , then there are two solutions to p∗ =

z(1 − z): they are at points z′ and z′′ where the horizontal line y = p∗ slices through the

parabola defined by z(1−z), as shown in Figure 17.3. Thus there are three possible equilibria

in this case: when z is equal to any of 0, z′, or z′′. For each of these three values of z, if

people expect exactly a z fraction of the population to buy the good, then precisely the top

z fraction of the population will do so.

There are two initial observations worth making from this example. First, the notion

of a self-fulfilling expectations equilibrium corresponds, in a general sense, to the effects of

aggregate “consumer confidence.” If the population has no confidence in the success of the

good, then because of the network effects, no one will want it, and this lack of confidence will

be borne out by the failure of people to purchase it. On the other hand — for the very same

good, at the same price — if the population is confident of its success, then it is possible

for a significant fraction of the population to decide to purchase it, thereby confirming its

success. The possibility of multiple equilibria in this way is characteristic of markets in which

network effects are at work.

A second observation concerns the nature of consumer demand in this case. Compared

to the simple, decreasing curve in Figure 17.2, the curve in Figure 17.3 highlights the compli-

cated relationship between the price and the equilibrium quantity. In particular, as the price

p∗ drops gradually below 1
4 , the “high” equilibrium z′′ moves right (as in the simple model

without network effects), but the “low” equilibrium z′ moves left, toward smaller fractions

of the population. To understand how these two equilibria relate to each other, we need to

consider an important qualitative contrast between them, which we formulate in the next

section.

17.3 Stability, Instability, and Tipping Points

Let’s continue with the example in Figure 17.3, and explore the properties of its equilibria.

To begin with, it’s useful to work through the details of why values of z other than 0, z′,

or z′′ do not constitute equilibria. In particular, suppose that a z fraction of the population

were to purchase the good, where z is not one of these three equilibrium quantities.
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• If z is between 0 and z′, then there is “downward pressure” on the consumption of the

good: since r(z)f(z) < p∗, the purchaser named z (and other purchasers just below z)

will value the good at less than p∗, and hence will wish they hadn’t bought it. This

would push demand downward.

• If z is between z′ and z′′, then there is “upward pressure” on the consumption of the

good: since r(z)f(z) > p∗, consumers with names slightly above z have not purchased

the good but will wish they had. This would drive demand upward.

• Finally, if z is above z′′, then there is again downward pressure: since r(z)f(z) < p∗,

purchaser z and others just below will wish they hadn’t bought the good, pushing

demand down.

These three different possibilities for the non-equilibrium values of z have interesting

consequences for the equilibria z′ and z′′. First, it shows that z′′ has a strong stability

property. If slightly more than a z′′ fraction buys the good, then the demand gets pushed back

toward z′′; if slightly less than a z′′ fraction buys the good, then the demand correspondingly

gets pushed up toward z′′. So in the event of a “near miss” in the population’s expectations

around z′′, we would expect the outcome to settle down to z′′ anyway.

The situation looks different — and highly unstable — in the vicinity of the equilibrium

z′. If slightly more than a z′ fraction buys the good, then upward pressure drives the demand

away from z′ toward the higher equilibrium at z′′. And if slightly less than a z′ fraction buys

the good, then downward pressure drives the demand away from z′ in the other direction,

down toward the equilibrium at 0. Thus, if exactly a z′ fraction of the population purchases

the good, then we are at equilibrium; but if the fraction is even slightly off from this, the

system will tend to spiral up or spiral down to a significant extent.

Thus, z′ is not just an unstable equilibrium; it is really a critical point, or a tipping

point, in the success of the good. If the firm producing the good can get the population’s

expectations for the number of purchasers above z′, then they can use the upward pressure

of demand to get their market share to the stable equilibrium at z′′. On the other hand,

if the population’s expectations are even slightly below z′, then the downward pressure will

tend to drive the market share to 0. The value z′ is the hump the firm must get over in order

to succeed.

This view of the equilibria suggests a way of thinking about the price p∗. If the firm

were to price the good more cheaply — in other words, lower the price p∗ — then this would

have two beneficial effects. Since the parabola in Figure 17.3 would now be sliced by a

lower horizontal line (reflecting the lower price), the low equilibrium z′ would move left; this

provides a critical point that is easier to get past. Moreover, the high equilibrium z′′ would

move right, so if the firm is able to get past the critical point, the eventual size of its user

population z′′ would be even larger. Of course, if p∗ is set below the cost of production the
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Shared Expectation z

Outcome

z
z = g(z)

Figure 17.4: From a model with network effects, we can define a function ẑ = g(z): if
everyone expects a z fraction of the population to purchase the good, then in fact a g(z)
fraction will do so.

firm loses money. But as part of a pricing strategy over time, in which early losses may

be offset by growth in the user population and later profits, this may be a viable strategy.

Many firms do this by offering free trials for their products or by setting low introductory

prices.

17.4 A Dynamic View of the Market

There is another way to view this critical point idea that is particularly illuminating. We

have been focusing on an equilibrium in which consumers correctly predict the number of

actual users of the good. Let’s now ask what this would look like if consumers have common

beliefs about how many users there will be, but we allow for the possibility that these beliefs

are not correct.

This means that if everyone believes a z fraction of the population will use the product,

then consumer x — based on this belief — will want to purchase if r(x)f(z) ≥ p∗. Hence, if

anyone at all wants to purchase, the set of people who will purchase will be between 0 and

ẑ, where ẑ solves the equation r(ẑ)f(z) = p∗. Equivalently,

r(ẑ) =
p∗

f(z)
, (17.1)
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Figure 17.5: When r(x) = 1 − x and f(z) = z, we get the curve for g(z) shown in the
plot: g(z) = 1 − p∗/z if z ≥ p∗ and g(z) = 0 if z < p∗. Where the curve ẑ = g(z) crosses
the line ẑ = z, we have self-fulfilling expectations equilibria. When ẑ = g(z) lies below the
line ẑ = z, we have downward pressure on the consumption of the good (indicated by the
downward arrows); when ẑ = g(z) lies above the line ẑ = z, we have upward pressure on the
consumption of the good (indicated by the upward arrows). This indicates visually why the
equilibrium at z′ is unstable while the equilibrium at z′′ is stable.

or, taking the inverse of the function r(·),

ẑ = r−1

(
p∗

f(z)

)
. (17.2)

This provides a way of computing the outcome ẑ from the shared expectation z, but we

should keep in mind that we can only use this equation when there is in fact a value of ẑ

that solves Equation (17.1). Otherwise, the outcome is simply that no one purchases.

Since r(·) is a continuous function that decreases from r(0) down to r(1) = 0, such a

solution will exist and be unique precisely when
p∗

f(z)
≤ r(0). Therefore, in general, we can

define a function g(·) that gives the outcome ẑ in terms of the shared expectation z as follows.

When the shared expectation is z ≥ 0, the outcome is ẑ = g(z), where

• g(z) = r−1

(
p∗

f(z)

)
when the condition for a solution

p∗

f(z)
≤ r(0) holds; and

g(z) = 0 otherwise.
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Figure 17.6: This curve g(z), and its relation to the line ẑ = z, illustrates a pattern that we
expect to see in settings more general than just the example used for Figure 17.5.

Let’s try this on the example illustrated in Figure 17.3, where r(x) = 1−x and f(z) = z.

In this case, r−1(x) turns out to be 1 − x. Also, z(0) = 1, so the condition for a solution
p∗

f(z)
≤ r(0) is just z ≥ p∗. Therefore, in this example

g(z) = 1− p∗

z
when z ≥ p∗, and g(z) = 0 otherwise.

We can plot the function ẑ = g(z) as shown in Figure 17.4. Beyond the simple shape of the

curve, however, its relationship to the 45o line ẑ = z provides a striking visual summary of the

issues around equilibrium, stability, and instability that we’ve been discussing. Figure 17.5

illustrates this. To begin with, when the plots of the two functions ẑ = g(z) and ẑ = z cross,

we have a self-fulfilling expectations equilibrium: here g(z) = z, and so if everyone expects a

z fraction of the population to purchase, then in fact a z fraction will do so. When the curve

ẑ = g(z) lies below the line ẑ = z, we have downward pressure on the consumption of the

good: if people expect a z fraction of the population to use the good, then the outcome will

underperform these expectations, and we would expect a downward spiral in consumption.

And correspondingly, when the curve ẑ = g(z) lies above the line ẑ = z, we have upward

pressure on the consumption of the good.

This gives a pictorial interpretation of the stability properties of the equilibria. Based on

how the functions cross in the vicinity of the equilibrium z′′, we see that it is stable: there

is upward pressure from below and downward pressure from above. On the other hand,
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where the curves cross in the vicinity of the equilibrium z′, there is instability — downward

pressure from below and upward pressure from above, causing the equilibrium to quickly

unravel if it is perturbed in either direction.

The particular shape of the curve in Figure 17.5 depends on the functions we chose in our

example, but the intuition behind this picture is much more general than the example. With

network effects in general, we would expect to see a relation between the expected number

of users and the actual number of purchasers that looks qualitatively like this curve, or more

generally like the smoother version in Figure 17.6. Where the curve ẑ = g(z) crosses the line

ẑ = z, we have equilibria that can be either stable or unstable depending on whether the

curve crosses from above or below the line.

The Dynamic Behavior of the Population. In the 1970s, Mark Granovetter and

Thomas Schelling used pictures like the ones in Figures 17.5 and 17.6 to model how a

population might react dynamically to a network effect [191, 361]. Specifically, they were

interested in how the number of people participating in a given activity with network effects

would tend to grow or shrink over time.

To motivate the kind of question they formulated, let’s imagine that instead of evaluating

the purchase of a discrete object like a fax machine, people in society are evaluating their

participation in a large social media site — something where you chat with friends, share

videos, or some similar activity. We are formulating the underlying story here in terms of

participation rather than purchasing because the dynamics of participation are more fluid

than the dynamics of purchasing: someone can change their mind about participation in a

social media site from one day to the next, whereas purchasing a physical good is a step that

isn’t as naturally undone.

Despite the change in the motivating story, the model remains exactly the same. Each

person x has an intrinsic interest in using the site, represented by a function r(x), and

the site is more attractive to people if it has more users, as governed by a function f(z).

Counterbalancing this, let’s suppose that there is a fixed level of effort required to use the

site, which serves the role of a “price” p∗ (except that the price may consist of the expenditure

of effort rather than money). Thus, if person x expects a z fraction of the population to

want to participate, then x will participate if r(x)f(z) ≥ p∗. This is just the same as the

criterion we saw before.

Let’s suppose that time proceeds in a fixed set of periods (e.g. days, weeks, or months)

t = 0, 1, 2, . . .. At time t = 0, some initial fraction of the population z0 is participating in the

site — let’s call this the initial audience size. Now, the audience size changes dynamically

over time as follows. In each period t, people evaluate whether to participate based on a

shared expectation that the audience size will be the same as what it was in the previous

period. In terms of our function g(·), which maps shared expectations to outcomes, this
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z = z

z = g(z)

Figure 17.7: A “zoomed-in” region of a curve ẑ = g(z) and its relation to the line ẑ = z.

means that z1 = g(z0), since everyone acts in period t = 1 on the expectation that the

audience size will be z0. After this, z2 = g(z1), since in period t = 2 everyone will act based

on the expectation that the audience size is now z1; and more generally, we have zt = g(zt−1)

for each t.

This is clearly a model in which the population is behaving in a myopic way — they

evaluate the benefits of participation as though the future will be the same as the present.

However, it is an approximation that can be reasonable in settings where people have rela-

tively limited information, and where they are behaving according to simple rules. Moreover,

part of its value as an approximation in this case is that it produces dynamic behavior that

closely corresponds to our notions of equilibrium: if the population follows this model, then

it converges precisely to self-fulfilling expectations equilibria that are stable. We discuss the

reasons for this next.
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z = z

z = g(z)

(z   , z  )0 0

(z   , z  )0 1

(z   , z  )1 1

Figure 17.8: The audience size changes dynamically as people react to the current audience
size. This effect can be tracked using the curve ẑ = g(z) and the line ẑ = z.

Analyzing the Dynamics. The dynamic behavior of the population can be analyzed in a

way that is purely “pictorial” but nevertheless completely rigorous. Here is how this works,

using a zoomed-in region of the curve ẑ = g(z) in the vicinity of two equilibria as shown in

Figure 17.7.

We have an initial audience size z0, and we want to understand how the sequence of

audience sizes z1 = g(z0), z2 = g(z1), z3 = g(z2), . . . behaves over time. We will do this by

tracking the points (zt, zt), as t ranges over t = 0, 1, 2, . . .; notice that all of these points lie

on the diagonal line ẑ = z. The basic way in which we move from one of these points to

the next one is shown in Figure 17.8. We start by locating the current audience size z0 on

the line ẑ = z. Now, to determine z1, we simply move vertically until we reach the curve

ẑ = g(z), since this gives us the value of z1 = g(z0). Then we again locate the audience size

z1 on the line ẑ = z — this involves moving horizontally from the point (z0, z1 = g(z0)) until

we reach the point (z1, z1). We have therefore gone from (z0, z0) to (z1, z1), following the
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z = z

z = g(z)

(z   , z  )0 0

(z   , z  )0 1

(z   , z  )1 1

(z   , z  )1 2

(z   , z  )2 2

Figure 17.9: Successive updates cause the audience size to converge to a stable equilibrium
point (and to move away from the vicinities of unstable ones).

evolution of the audience in the first time period.

This is the basic operation: for each time period t, we can determine the new audience

size zt from the current one zt−1 in the same way. We first move vertically from the point

(zt−1, zt−1) to the point (zt−1, zt) (which lies on the curve ẑ = g(z)); we then move horizontally

from the point (zt−1, zt) to the point (zt, zt).

Figure 17.9 now shows what happens as we track this sequence of points, following how

the audience size changes. When we’re following a part of the curve ẑ = g(z) that lies above

the diagonal line ẑ = z, the points move upward, converging to the nearest place where the

two functions cross, which will be at a stable equilibrium point. On the left- and right-hand

parts of the picture we show what happens to two other trajectories that start out from

points where the curve ẑ = g(z) lies below the diagonal line ẑ = z. Here, the sequence of

points that track the audience size will move downward, again converging to the first crossing

point it reaches; again, this will be a stable equilibrium. Notice that around the unstable
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equilibrium point in the figure, this means that the trajectories of points move away from

it on either side — consistent with our view of unstable equilibria, there is no way to reach

this point unless you start right at it.

Thus, this simple dynamics for updating the audience size — although it is based on my-

opic behavior by the population — illustrates how stable and unstable equilibria govern the

outcomes. Stable equilibria attract the population from both sides, while unstable equilibria

act like “branch points,” with the audience size flowing away from them on either side.

17.5 Industries with Network Goods

The discussion and models thus far provide some useful intuitions about how an industry

with network effects might be expected to evolve over time. Let’s discuss what we might

learn at a qualitative level from these models. We’ll continue to use “audience size” for the

fraction of the population that purchases a product.

Let’s start with Figure 17.3, and suppose that a new product is introduced with a high

initial cost of production — in particular, suppose the horizontal line at height p∗ is above

the top of the parabola. In this case the only equilibrium is at audience size z = 0. If over

time the cost of production falls then eventually a horizontal line drawn at p∗ will intersect

the parabola in two points, much like we see in Figure 17.3, and there will be three possible

equilibria. But when p∗ is large, near the top of the curve in Figure 17.3, it is likely that

none of the good will be sold: to have any sales occur consumers would have to expect an

audience size of at least z′, which will be large when p∗ is large (near the fraction of the

population where the parabola reaches its peak). Given that none were sold previously —

when the cost was above the top of the curve — this seems an unlikely prediction. But as

the cost of production continues to fall, the critical point decreases (as z′ gets closer to 0),

and an audience size of at least z′ starts to seem more and more likely. Once consumers

expect the good to be viable, with an audience size of at least z′, the stable equilibrium is in

fact z′′. So as costs decline we would expect to initially see no sales, and then once purchases

begin we would expect to see sales grow rapidly to the stable point.

Marketing a Product with Network Effects. How can a firm that wants to sell a

product with a network effect use these insights to market its product? Suppose you are

running a firm that is producing a new product subject to network effects; perhaps it’s a

new piece of software, communication technology, or social media. The marketing of this

product will not succeed unless you can get past the tipping point (at z′). Starting small

and hoping to grow slowly is unlikely to succeed, since unless your product is widely used it

has little value to any potential purchasers.

Thus, you somehow need to convince a large initial group to adopt your product before
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others will be willing to buy it. How would you do this? One possibility is to set an initial

low, introductory price for the good, perhaps even offering it for free. This price below the

cost of producing the good will result in early losses, but if the product catches on — if it

gets over the tipping point — then your firm can raise the price and perhaps make enough

profit to overcome the initial losses.

Another alternative is to attempt to identify fashion leaders, those whose purchase or use

of the good will attract others to use it, and convince them to adopt the good. This strategy

also involves network effects, but they are ones that cannot be studied at the population level.

Instead we would need to identify a network of connections between potential purchasers and

ask who influences whom in this network. We explore this idea in Chapter 19.

Social Optimality with Network Effects. We saw in Section 17.1 that for a market

with no network effects, the equilibrium is socially optimal. That is, it maximizes the total

difference between the reservation prices of the consumers who purchase the good and the

total cost of producing the good, over all possible allocations to people.

For goods with network effects, however, the equilibria are typically not optimal. At a

high level, the reason is that each consumer’s choice affects each other consumer’s payoff,

and the consequences of this can be analyzed as follows. Suppose we are at an equilibrium

in which the audience size is z∗. The consumer named z∗ — the purchaser with the least

interest in the product — has a reservation price of r(z∗)f(z∗) = p∗. Now, consider the set of

consumers with names above z∗ and below z∗+c for some small constant c > 0. None of these

consumers want to buy, since r(z)f(z∗) < p for z in this range. But if they all did purchase

the good, then all the current purchasers would benefit: the value of the product to some

purchaser x < z∗ would increase from r(x)f(z∗) to r(x)f(z∗ + c). The potential consumers

between z∗ and z∗ + c don’t take this effect into account in their respective decisions about

purchasing the good.

It is easy to set up situations where this overall benefit to existing purchasers outweighs

the overall loss consumers between z∗ and z∗ + c would experience from buying the good. In

such a case the equilibrium is not socially optimal, since society would be better off if these

additional people bought the good. This example illustrates the more general principle that

for goods with network effects, markets typically provide less of the good than is socially

optimal.

Network Effects and Competition. Finally, let’s ask what might happen if multiple

firms develop competing new products, each of which has its own network effects. For

example, we could consider two competing social-networking sites that offer similar services,

or two technologies that do essentially the same thing, but where the value of each of these

technologies depends on how many people use it. There are a number of classic examples of
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this from technology industries over the last several decades [27]. These include the rise of

Microsoft to dominate the market for personal-computer operating systems, and the triumph

of VHS over Betamax as the standard videotape format in the 1980s.

In such cases of product competition with network effects, it is likely that one product

will dominate the market, as opposed to a scenario in which both products (or even more

than two) flourish. The product that first gets over its own tipping point attracts many

consumers and this may make the competing product less attractive. Being the first to

reach this tipping point is very important — more important than being “best” in an abstract

sense. That is, suppose that if product A has audience size z, then consumer x values it

at rA(x)f(z), while if product B has audience size z, then consumer x values it at a larger

amount rB(x)f(z) > rA(x)f(z). Let’s also suppose that each product can be produced at

the same price. Then it seems reasonable to say that product B is the better product. But

if product A is on the market first, and gets over its tipping point, then product B may not

be able to survive.4

These considerations help provide some intuition for how markets with strong network

effects tend to behave. Writing in the Harvard Business Review in 1996, Brian Arthur sum-

marized the “hallmarks” of these markets in a way that reflects the discussion in the previous

paragraph: “market instability (the market tilts to favor a product that gets ahead), mul-

tiple potential outcomes ([e.g.,] under different events in history different operating systems

could have won), unpredictability, the ability to lock in a market, the possible predominance

of an inferior product, and fat profits for the winner” [27]. It is not the case that a given

market with network effects will necessarily display all these characteristics, but they are

phenomena to watch for in this type of setting.

Of course, in our discussion of the dominance of product A over product B, we are

assuming that nothing else changes to shift the balance after A achieves dominance. If the

firm that makes product B improves its product sufficiently and markets it well, and if the

firm that makes product A doesn’t respond effectively, then B make still overtake A and

become the dominant product.

17.6 Mixing Individual Effects with Population-Level
Effects

Thus far we have been focusing on models of network effects in which the product is useless

to consumers when it has an audience size of 0; this is captured by our assumption that

f(0) = 0. But of course one can also study more general kinds of network effects, in which

a product has some value to a person even when he or she is the first purchaser, and its

value then increases as more people buy it. We can think of this as a model that mixes

4Exercises 3 and 4 at the end of this chapter offer simple models of this situation.
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Shared Expectation z

Outcome

z

z = z

z = g(z)

Figure 17.10: When f(0) > 0, so that people have value for the product even when they
are the only user, the curve ẑ = g(z) no longer passes through the point (0, 0), and so an
audience size of 0 is no longer an equilibrium.

individual effects (a person’s value for the product on its own) with population-level effects

(the increased value a person derives when the product has a large audience size). In such

a model, we would have f(0) > 0, and have f(z) increasing in z.

We won’t attempt to cover all the ways of fleshing out such a model; instead we develop

one general class of examples to illustrate how qualitatively new phenomena can arise when

we mix individual and population-level effects. In particular, we focus on a phenomenon

identified in this type of model by Mark Granovetter [191], and which corresponds to an

intuitively natural issue in the marketing of new products with network effects.

A Concrete Model. For our example, let’s consider a function f(·) of the form f(z) =

1 + az2 for a constant parameter a. We’ll continue to use the simple example r(x) = 1− x;

so when the audience size is z, the value of the product to consumer x is

r(x)f(z) = (1− x)(1 + az2).
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Shared Expectation z

Outcome

z

z = z

z = g(z)

(z   , z  )1 1

(z   , z  ) 0 0 = (0,0)

stable equilibrium (z*,z*)

stable equilibrium (z**,z**)

Figure 17.11: The audience grows dynamically from an initial size of zero to a relatively
small stable equilibrium size of z∗.

Now let’s apply the analysis from Section 17.4 to this function to get the dynamic behavior

of the market. We will assume that the price p∗ is strictly between 0 and 1. When everyone

expects an audience size of z, the fraction of people who actually use the product is ẑ = g(z),

where g(·) is defined as in Section 17.4:

g(z) = r−1

(
p∗

f(z)

)
when the condition for a solution

p∗

f(z)
≤ r(0) holds; and

g(z) = 0 otherwise.

As before, we have r−1(x) = 1 − x. Since in our case r(0) = 1, f(z) ≥ 1, and p∗ < 1, this

means that the condition for a solution
p∗

f(z)
≤ r(0) will always hold. Plugging this into the

formula for g(z), we get

g(z) = 1− p∗

1 + az2
.

When we plot this function ẑ = g(z) together with the 45o line ẑ = z, we get something

that looks like Figure 17.10.



17.6. MIXING INDIVIDUAL EFFECTS WITH POPULATION-LEVEL EFFECTS 539

Shared Expectation z

Outcome

z

z = z

z = g(z)

stable equilibrium

Figure 17.12: If the price is reduced slightly, the curve ẑ = g(z) shifts upward so that it no
longer crosses the line ẑ = z in the vicinity of the point (z∗, z∗).

Growing an Audience from Zero. In our earlier model with f(0) = 0, an audience size

of zero was a stable equilibrium: if everyone expected that no one would use the product,

then no one would. But when f(0) > 0, so that the product has value to people even when

they are the only user, an audience size of zero is no longer an equilibrium (when p∗ < 1):

even if everyone expects no one to use the product, some people will still purchase it.

As a result, it becomes natural to ask what happens when such a product starts at an

audience size of zero, and we then follow the dynamics that were defined in Section 17.4.

Figure 17.11 shows what happens when we do this: the sequence of audience sizes increases

from z0 = 0 up to the first point (z∗, z∗) at which the curve ẑ = g(z) crosses the line ẑ = z.

This is the stable equilibrium that is reached when we run the dynamics of the market

starting from an audience size of 0.

Notice how the underlying story that we’re modeling with this process has no direct

analogue in the earlier model when f(0) = 0. There, because the product was useless if it

had an audience size of zero, a firm marketing the product needed alternate ways to get over
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Shared Expectation z

Outcome

z

z = z

z = g(z)

(z   , z  )1 1

(z   , z  ) 0 0 = (0,0)

(z   , z  )2 2

(z   , z  )3 3

(z   , z  )4 4

(z   , z  )5 5

(z   , z  )6 6

stable equilibrium

Figure 17.13: The small reduction in price that shifted the curve ẑ = g(z) has a huge effect
on the equilibrium audience size that is reached starting from zero.

its tipping point at the low, unstable equilibrium in order to have any customers at all. But

when f(0) > 0, the audience can grow from zero up to some larger stable equilibrium z∗

through the simple dynamics in Figure 17.11. In other words, we’re able to talk here about

an audience that grows gradually and organically, starting from no users at all, rather than

one that needs to be pushed by other means over an initial tipping point.

Bottlenecks and Large Changes. The firm marketing the product in our example,

however, may well want more than what it gets in Figure 17.11. Although the audience

grows to some size z∗ on its own, there is a much higher stable equilibrium, shown in

the figure at (z∗∗, z∗∗), that would be much more desirable if only it could be reached. But

starting from zero, the audience doesn’t reach this high equilibrium z∗∗, because it is blocked

by a “bottleneck” that stops it at z∗.

Here is where we get to the surprising phenomenon at the heart of this example: small

changes in the properties of the market can cause enormous changes in the size of the
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equilibrium audience that is reached, starting from zero [191]. Suppose that the firm is able

to lower the price p∗ slightly, to some new value q∗ < p∗. Then we get a new function h(z)

mapping shared expectations to outcomes,

h(z) = 1− q∗

1 + az2
,

which in turn defines a new dynamic process. As q∗ is made smaller, the curve ẑ = h(z)

shifts upward until it no longer crosses the line ẑ = z at all in the vicinity of the point

(z∗, z∗); this is shown in Figure 17.12. However, h(·) still has a high stable equilibrium close

to the high equilibrium (z∗∗, z∗∗) for the function g(·).
As soon as h(·) lifts enough that it no longer crosses ẑ = z near (z∗, z∗), the equilibrium

audience size starting from zero changes abruptly and dramatically: it suddenly jumps from

a value near z∗ to a much higher value near z∗∗. There is a natural reason for this: as shown

in Figure 17.13, the “bottleneck” at (z∗, z∗) has opened into a narrow passageway, and so

now the dynamics starting from the point (0, 0) can carry the audience all the way up to the

stable equilibrium near (z∗∗, z∗∗).5

This phenomenon shows how in models with network effects, small changes in market

conditions can have strong, discontinuous effects on the outcome. The contrast between

Figures 17.11 and Figures 17.13 relates to an important issue in the marketing of products

with network effects. In Figures 17.11, the product reaches a small group of the most

enthusiastic consumers (the ones with the highest values for the product), but it fails to make

the leap from this group to the much broader set of people — mainstream, less enthusiastic

consumers — who could collectively push the audience size up to the higher equilibrium

at z∗∗. However, once the price is lowered very slightly, making the product slightly more

attractive to everyone, a passage is opened that enables the success of the product with

its most enthusiastic consumers to carry over to this larger mainstream set, driving the

equilibrium audience size up to a much larger value.

17.7 Advanced Material: Negative Externalities and
The El Farol Bar Problem

In different contexts, we have now analyzed situations with both negative externalities (traf-

fic congestion and the Braess Paradox) and positive externalities (goods with network effects,

in this chapter). The settings for these analyses each contained a number of details designed

to capture their respective contexts: in our discussion of negative externalities we had the

5It is not hard to find specific numbers that cause this effect to happen; for example, you can try
f(z) = 1 + 4z2 and p∗ = 0.93. In this case, the equilibrium audience size starting from zero is around 0.1.
If we then lower the price slightly to q∗ = 0.92, the equilibrium audience size starting from zero jumps to
around 0.7.
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complexity of an underlying network through which the traffic flowed; with positive exter-

nalities, we had a heterogeneous population with diverse reservation prices, all reacting to a

common market price.

But even after eliminating all these details, reducing the problems to simpler forms, the

phenomena that surround negative and positive externalities remain quite different at a more

fundamental level. In this section we consider some of these contrasts using stylized, simple

examples that enable us to highlight the differences more clearly. In the process, we will also

consider the question of how individuals coordinate on equilibrium behavior in each setting.

Simple Scenarios with Negative and Positive Externalities. As our simplified set-

ting for negative externalities, we use the widely-studied El Farol Bar problem created by

Brian Arthur [26]. The problem is named after a bar in Sante Fe that used to have live

music every Thursday evening. In the formulation of the problem, the bar has seating for

only 60 people, and so showing up for the music is enjoyable only when at most 60 people

do so. With more than 60 people in attendance, it becomes unpleasantly crowded, such that

it would be preferable to have stayed home. Now, unfortunately, there are 100 people each

week who are interested in going to the bar, and they all share the view that going is only

worthwhile when at most 60 people show up. How does each person reason in a given week

about whether to go or to stay home — knowing that everyone else is reasoning about this

decision as well?

The El Farol Bar problem describes a situation with a very simple negative externality:

the payoffs to participating in the underlying activity (going to the bar) decrease as the

number of participants increases. And despite the appealingly simple statement of the

problem, it creates a situation in which the reasoning problem faced by the participants

is very complex. To illustrate where some of these complexities come from, it’s useful to

compare it to a simple analogous situation that contains a positive externality.

In this parallel scenario, let’s imagine a division of a large company consisting of 100

people, in which the management is encouraging the employees to use a particular corporate

social-networking site as part of their workflow. The management would like each employee

to create an account and maintain a presence on the site to facilitate increased interaction

across the division. The employees each believe that this would be worthwhile provided

that enough people in the division participate in the site; otherwise, the effort required

would not be worth it. Thus, each employee wants to use the social-networking if at least

60 other employees do so as well. (So counting the employee herself, this means the total

number of employees using the site should be strictly greater than 60 in order for it to

be worth the effort.) This is closely analogous to the scenarios we’ve considered in earlier

sections of this chapter, concerning goods with network effects — although here, instead

of each individual having a distinct reservation price, there is simply a common interest in
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participating provided the audience size is large enough. (Also, the size of the population is

finite rather than infinite.) In a different way, the analogy to the El Farol Bar problem should

also be clear: in the scenario of the social-networking site we have a positive externality in

which a participation level above 60 is good, while in El Farol, we have a negative externality

in which a participation level above 60 is bad.

These two examples have been designed in such a way that one exhibits only negative

externalities, and the other exhibits only positive externalities. It’s important to keep in

mind, of course, that many real situations in fact display both kinds of externalities — some

level of participation by others is good, but too much is bad. For example, the El Farol Bar

might be most enjoyable if a reasonable crowd shows up, provided it does not exceed 60.

Similarly, an on-line social media site with limited infrastructure might be most enjoyable

if it has a reasonably large audience, but not so large that connecting to the Web site

becomes very slow due to the congestion. To keep the discussion here as clean as possible,

we are keeping the two kinds of externalities separate, but understanding how they work in

combination is an important topic of ongoing research [226]. We also consider a simple way

of combining the two effects in Exercise 2 at the end of this chapter.

Basic Comparisons between the Two Scenarios. The contrasts between the two

scenarios — El Farol and corporate social-networking — translate into significant differences

in how we should expect people to behave. Let’s first think about these differences informally;

later we’ll carry out the analysis in more detail.

Reasoning about the social-networking scenario using what we’ve seen earlier in this

chapter, we find that there are two very natural equilibria the group of 100 people could

exhibit. If everyone participates, then everyone has an interest in participating; similarly, if

no one participates, then no one has an interest in participating. (There are also other more

complex equilibria, as we’ll see later, but these two all-or-nothing equilibria are by far the

two most natural.)

On the other hand, neither of these outcomes is an equilibrium in the El Farol Bar

problem. If everyone were to attend, then everyone would have an incentive to stay home;

and if no one were to attend, then everyone would have an incentive to attend. Instead, the

equilibria have a more complex structure in which individuals need to break the underlying

symmetry in such a way that some people attend and some stay home.

There is a second, essentially equivalent way to describe this contrast, using the idea

of shared expectations from earlier in the chapter. In the social-networking scenario, if the

individuals have a shared expectation that everyone will participate, then this expectation

is self-fulfilling: everyone will in fact participate. On the other hand, if they have a shared

expectation that no one will participate, this expectation too will be self-fulfilling. As we’ve

seen, understanding such self-fulfilling expectations is a key part of reasoning about situations
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with positive externalities.

The negative externalities in the El Farol Bar problem, on the other hand, pose problems

for shared expectations. In particular, individuals cannot have a fixed, shared expectation

of the audience size at El Farol that will be self-fulfilling. If everyone expects an audience

size of at most 60, then everyone will show up, thereby negating this prediction. Similarly,

if everyone expects an audience size above 60, then everyone will stay home, negating this

prediction too.6

These are fundamental contrasts: with positive externalities, there exist self-fulfilling

expectations and a natural set of outcomes to coordinate on; with negative externalities,

any shared expectation of a fixed audience size will be self-negating, and the individuals

must instead sort themselves out in much more complicated ways. Given this complexity,

the El Farol Bar problem has become a testing ground for a variety of models of individual

behavior. We now describe some of these models and styles of analysis in more detail.

Nash Equilibria in the El Farol Bar Problem. First, let’s consider how to model the

El Farol Bar problem as a game that will be played once by the set of 100 people. (We could

imagine that instead of the bar having music every Thursday, it is simply hosting a single

concert, and everyone needs to decide in advance whether to attend.) Each person has two

possible strategies, Go (to the bar) or Stay (home), and his payoffs are as follows.

• If he chooses Stay, then he receives a payoff of 0 in all outcomes.

• If he chooses Go, then he receives a payoff of x > 0 when at most 60 people choose

Go, and a payoff of −y < 0 when more than 60 people choose Go.

There are many different pure-strategy Nash equilibria for this game. Our discussion

above makes clear that there is no equilibrium in which all players use the same pure strategy,

but any outcome in which exactly 60 people choose Go and 40 people choose Stay is a pure-

strategy Nash equilibrium. Of course, it is far from clear how the group would settle on this

set of heterogeneous strategies, since at the outset of the game, they are all identical. We

will return to the question of how heterogeneous strategies might arise later in this section.

There is, however, an equilibrium in which all players behave symmetrically, and this

is through the use of mixed strategies, in which each player chooses Go with the same

probability p. In this case too, there are some subtleties. It would be natural to guess that

the shared probability p in this mixed-strategy equilibrium would be 0.6, but this is not

necessarily the case. Instead, p depends on the payoffs x and −y: following the reasoning we

saw in Chapter 6, we need to choose p so that each player is indifferent between choosing Go

6As Brian Arthur notes, this latter possibility is a reflection of the same phenomenon that the baseball
player Yogi Berra invoked when he quipped about a popular restaurant, “Nobody goes there anymore; it’s
too crowded” [26, 104].



17.7. ADVANCED MATERIAL: NEGATIVE EXTERNALITIES AND THE EL FAROL BAR PROBLEM545

and choosing Stay. This will ensure that no one has an incentive to deviate from randomizing

between the two alternatives.

Since the payoff for Stay is always 0, this means that we need to choose p so that the

expected payoff from Go is also 0. Therefore, we need to choose p so that the equation

x · Pr [at most 60 go]− y · Pr [more than 60 go] = 0 (17.3)

holds. Using the fact that

Pr [more than 60 go] = 1− Pr [at most 60 go] ,

we can rearrange Equation (17.3) to get

Pr [at most 60 go] =
y

x + y
. (17.4)

So in order to have a mixed-strategy equilibrium, we must choose p so that Equation (17.4)

holds. When x = y, choosing p = 0.6 will work [210]. But suppose that x and y are different;

for example, perhaps the music at El Farol is pleasant, but the nights on which it is crowded

are truly unbearable, so that y is significantly larger than x. In this case, p must be chosen

so that the probability at most 60 people go is very high, and so p will be significantly

less than 0.6. Since the expected number of people attending is 100p, this means that in

expectation, significantly fewer than 60 people will be showing up. So with y > x, the bar

will be significantly underutilized in the mixed-strategy equilibrium, due to the shared fear

of overcrowding.

The existence of this mixed-strategy equilibrium is a useful counterpoint to our earlier

informal discussion about the difficulty of forming a shared expectation in the El Farol Bar

problem. It’s true that any shared expectation consisting of a fixed number representing the

audience size — the kind of shared expectation we used earlier in this chapter — will be

negated by what actually happens. But if we allow more complicated kinds of expectations,

then in fact there is a shared expectation that will be self-fulfilling — this is the expectation

that everyone plans to randomize their decision to attend the bar, choosing to go with the

probability p that makes Equation (17.4) come true.

Analogies with Equilibria in Related Games. To get some intuition about the equi-

libria we’ve found, it’s useful to compare them to the equilibria of some related games.

First, suppose we model the corporate social-networking scenario from earlier in this

section as a similar one-shot game: the two possible strategies are Join or Don’t Join (the

site); the payoff to Don’t Join is always 0, the payoff to Join is y when more than 60 people

join, and the payoff to Join is −x when at most 60 join. In this case, corresponding to what

we saw in our informal discussion earlier, there are just two pure-strategy equilibria: one in
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which everyone chooses Join, and one in which everyone choose Don’t Join. Interestingly,

the same mixed-strategy equilibrium that applied to the El Farol Bar problem also holds

here: if everyone chooses Join with a probability p for which

−x · Pr [at most 60 go] + y · Pr [more than 60 go] = 0 (17.5)

then everyone is indifferent between joining and not joining, and so this is an equilibrium.

Since Equations (17.3) and (17.5) are equivalent (they are simply negations of each other),

we get the same value of p that we did in the El Farol Bar problem.

Since games with 100 players are inherently complex, it’s also instructive to ask what

the two-player versions of these games look like. Specifically, in the two-player version of

the El Farol Bar problem, each player wants to attend the bar as long as the other player

doesn’t; in the two-player social-networking game, each players wants to use the site as

long as the other one does. Scaled down to this size, each of these corresponds to one of

the fundamental games introduced in Chapter 6: the two-player El Farol Bar problem is a

Hawk-Dove game, in which the two players try to make their actions different, while the

two-player social-networking scenario is a Coordination game, in which the two players try

to make their actions the same.

Each of these games has pure-strategy equilibria, as well as a mixed-strategy equilibrium

in which the players randomize over their two available strategies. For example, in the

two-player version of the El Farol Bar problem, the payoff matrix is shown in Figure 17.14.

Player 1

Player 2
Stay Go

Stay 0, 0 0, x
Go x, 0 −y,−y

Figure 17.14: Two-Player El Farol Problem

The two pure-strategy equilibria consist of one player choosing Go while the other chooses

Stay. For the mixed-strategy equilibrium, each player chooses Go with a probability p that

causes the expected payoff from Go to be equal to 0:

x(1− p)− yp = 0,

and hence p = x/(x + y). As in the multi-player version, p is not equal to 1/2 unless x = y.

Also, just as there will be random fluctuations in the actual attendance at the bar around

the mean of 100p in the multi-player game, there is significant variation in how many people

choose Go in the two-player version as well. Specifically, with probability p2 both players

choose Go, and with probability (1− p)2 both choose Stay.
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Repeated El Farol Problems. While the existence of a mixed-strategy equilibrium in

which all 100 people follow the same strategy is an important observation about the El

Farol Bar problem, it can’t be the whole story. It’s not clear why, or whether, a group of

people would actually arrive at this mixed-strategy equilibrium, or at any other particular

equilibrium or pattern of behavior from among the many that are possible. Once the group

is playing an equilibrium, no one has an incentive to deviate — that’s what it means for the

behaviors to be in equilibrium. But how do they coordinate on equilibrium behavior in the

first place?

To formulate models that address these questions, it is useful to think about a setting in

which the El Farol game is played repeatedly. That is, suppose that each Thursday night the

same 100 people must each decide whether to go to the bar or stay home, and each receives

a payoff of x (from going as part of a group of at most 60), −y (from going as part of a group

of more than 60), or 0 (from staying home). Each person also knows the history of what has

happened on each prior Thursday, so they can use this information in making their decision

for the current Thursday. By reasoning about decisions over time in this repeated El Farol

game, we might hope to see how a pattern of behavior gradually emerges from rules that

take past experience into account.

There are a number of different formalisms that can be used to study the repeated El

Farol game. One approach is to view the full sequence of Thursdays as a dynamic game

of the type studied in Section 6.10, in which players choose sequences of strategies — in

this case, one for each Thursday — and correspondingly receive payoffs over time. We

could consider Nash equilibria in this dynamic game and see whether the play of the game

eventually settles down to repeated play of some equilibrium of the one-shot El Farol game.

Essentially, we would be asking if equilibrium play by sophisticated players in the dynamic

game converges to something that looks simple. Although learning can go on during the play

of an equilibrium in a dynamic game [174], this approach can’t fully answer our underlying

question of how the individuals come to play a Nash equilibrium at all — since the learning

here would be taking place within a Nash equilibrium of the larger dynamic game.

An alternate approach is to ask what might happen if the players are potentially more

naive. A useful way to think about how players — sophisticated or naive — behave in a

repeated game is to decompose their choice of strategy into a forecasting rule and a choice

of action given the forecasting rule. A forecasting rule is any function that maps the past

history of play to a prediction about the actions that all other players will take in the

future. Forecasting rules can in principle be very complex. An individual could take all past

behavior into account in generating a forecast and he may also forecast that how others will

behave in the future depends on how he behaves now. Alternatively, a very naive player may

forecast that each other player will simply use a fixed action forever. From an individual’s

forecasting rule, we can then make a prediction about his behavior: we assume that each
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individual behaves optimally given his forecasting rule. That is, he chooses an action that

maximizes his expected payoff given whatever he forecasts about the behavior of others.

For the repeated El Farol game, most attention has focused on forecasting rules that

work with audience sizes: a given forecasting rule is a function mapping the sequence of past

audience sizes to a prediction about the number of other people who will go to the bar on

the upcoming Thursday. (Thus, each forecasting rule produces a number between 0 and 99

when given a history of past audience sizes.) This is a bit less expressive than a forecasting

rule that predicts, for each other person individually, whether they will go to the bar or stay

home, but it captures the main quantity of interest, which is the total number of people who

show up. For an individual using any such forecasting rule, his choice of action is easy to

describe: he goes to the bar if his forecasting rule produces a number that is at most 59,

and he stays home if it produces a number that is 60 or more.

In keeping with our informal discussion earlier in the section about self-fulfilling and self-

negating expectations, we observe first of all that if everyone uses the same forecasting rule

for the audience size, then everyone will make very bad predictions. In any given situation,

either this common forecasting rule will predict 59 or fewer others in attendance, or at

least 60 others in attendance. In the first case, everyone will show up, and in the second

case, everyone will stay home; in both cases, the forecasting rule is wrong. So to make any

progress, we will need for players to use a diversity of different forecasting rules.

A long line of research has considered how the group behaves when they use different

classes of forecasting rules; the goal is to understand whether the system converges to a

state in which, on any given Thursday, roughly 60% of the agents produce a forecast that

causes them to go the bar, and roughly 40% produce a forecast that causes them to stay

home (e.g. [26, 103, 166]). This investigation has been carried out both mathematically

and by computer simulation, with some of the analysis becoming quite complex. In general,

researchers have found that under a variety of conditions, the system converges to a state

where the average attendance varies around 60 — in other words, providing near-optimal

utilization of the bar over time.

While we won’t go into the details of this analysis, it is not hard to get some intuition for

why an average attendance of 60 arises very naturally when agents select from a diversity

of forecasting rules. To do this, we can analyze perhaps the simplest model of individual

forecasting, in which each person chooses a fixed prediction k for the number of others who

will show up, and uses this prediction every week. That is, he will ignore the past history

and always predict that k other people will be in attendance. Now, if each person picks their

fixed value of k uniformly at random from the 100 natural numbers between 0 and 99, what

is the expected audience size at the bar each week? The audience will consist of all people

whose forecasting rule is based on a value of k between 0 and 59, and the expected number

of such people is 60. Thus, with this very naive forecasting, we in fact get an expected
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attendance of 60 each Thursday, as desired.

Of course, this analysis is based on people who make extremely naive forecasts, but it

shows how diversity in the set of forecasting rules can naturally lead to the right level of

attendance. One can also ask what happens when individuals select random forecasts from

a more complex space of possibilities, in which the prediction is based on the past several

audience sizes. Under fairly general assumptions, an average attendance of 60 continues to

hold, although establishing this is significantly more complicated [103].

17.8 Exercises

1. Consider a product that has network effects in the sense of our model from Chapter 17.

Consumers are named using real numbers between 0 and 1; the reservation price for

consumer x when a z fraction of the popuation uses the product is given by the formula

r(x)f(z), where r(x) = 1− x and f(z) = z.

(a) Let’s suppose that this good is sold at cost 1/4 to any consumer who wants to

buy a unit. What are the possible equilibrium number of purchasers of the good?

(b) Suppose that the cost falls to 2/9 and that the good is sold at this cost to any

consumer who wants to buy a unit. What are the possible equilibrium number of

purchasers of the good?

(c) Briefly explain why the answers to parts (a) and (b) are qualitatively different.

(d) Which of the equilibria you found in parts (a) and (b) are stable? Explain your

answer.

2. In Chapter 17, we focused on goods with positive network effects: ones for which addi-

tional users made the good more attractive for everyone. But we know from our earlier

discussion of Braess’s Paradox that network effects can sometimes be negative: more

users can sometimes make an alternative less attractive, rather than more attractive.

Some goods actually have both effects. That is, the good may become more attractive

as more people use it as long there aren’t too many users, and then once there are too

many users it becomes less attractive as more people use it. Think of a club in which

being a member is more desirable if there is a reasonable number of other members,

but once the number of members gets too large the club begins to seem crowded and

less attractive. Here we explore how our model of network effects can incorporate such

a combination of effects.

In keeping with the notation in Chapter 17, let’s assume that consumers are named

using real numbers between 0 and 1. Individual x has the reservation price r(x) = 1−n

before we consider the network effect. The network effect is given by f(z) = z for
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m ≤ 1/4 and by f(z) = (1/2) − z for z ≥ 1/4. So the network benefit to being a

user is maximized when the fraction of the population using the product is z = 1/4,

once the fraction is beyond 1/4 the benefit declines, and it becomes negative if more

than 1/2 of the population is using it. Suppose that the price of this good is p where

0 < p < 1/16.

(a) How many equilibria are there? Why? [You do not need to solve for the number(s)

of users; a graph and explanation is fine.]

(b) Which equilibria are stable? Why?

(c) Consider an equilibrium in which someone is using the good. Is social welfare

maximized at this number of users, or would it go up if there were more users, or would

it go up if there were fewer users? Explain. [Again no calculations are necessary; a

careful explanation is sufficient.]

3. You have developed a new product which performs the same service as an established

product and your product is much better than the established product. Specifically, if

the number of users of the two products were the same, then each potential purchaser’s

reservation price for your product would be twice their reservation price for the ex-

isting product. The difficulty that you face is that these are products with network

effects and no one wants to use more than one of the two products. Currently, every

potential purchaser is using the established product. Your cost of production and your

competitor’s costs of production are exactly the same and let’s suppose that they are

equal to the price at which your competitor’s product is sold.

If all of the potential purchasers switched to your product the maximum price that you

could charge (and still have all of them buy your product) would be twice the current

price. So clearly you could make a nice profit if you could attract these potential

purchasers. How would you attempt to convince users to switch to your product? You

do not need to construct a formal model of the situation described in this question. It

is sufficient to describe the strategies that you would try.

4. In the model of network effects that we covered in Chapter 17 there was only one

product. Now let’s ask what might happen if there are two competing products which

both have network effects. Assume that for each product:

(a) If no one is expected to use the product, then no one places a positive value on

the product.

(b) If one-half of the consumers are expected to use the product, then exactly one-half

of the consumers would buy the product.
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(c) If all of the consumers are expected to use the product, then all consumers would

buy the product.

Using an analysis of network effects, describe the possible equilibrium configurations of

numbers of consumers using each product and briefly discuss which of these equilibria

you would expect to be stable and which you would expect to be unstable. You do

not need to build a formal model to answer this question. Just describe in words what

might happen in this market.


