
Chapter 16

Information Cascades

16.1 Following the Crowd

When people are connected by a network, it becomes possible for them to influence each

other’s behavior and decisions. In the next several chapters, we will explore how this ba-

sic principle gives rise to a range of social processes in which networks serve to aggregate

individual behavior and thus produce population-wide, collective outcomes.

There is a nearly limitless set of situations in which people are influenced by others:

in the opinions they hold, the products they buy, the political positions they support, the

activities they participate in, the technologies they use, and many other things. What we’d

like to do here is to go beyond this observation and consider some of the reasons why such

influence occurs. We’ll see that there are many settings in which it may in fact be rational

for an individual to imitate the choices of others even if the individual’s own information

suggests an alternative choice.

As a first example, suppose that you are choosing a restaurant in a unfamiliar town, and

based on your own research about restaurants you intend to go to restaurant A. However,

when you arrive you see that no one is eating in restaurant A while restaurant B next door

is nearly full. If you believe that other diners have tastes similar to yours, and that they too

have some information about where to eat, it may be rational to join the crowd at B rather

than to follow your own information. To see how this is possible, suppose that each diner

has obtained independent but imperfect information about which of the two restaurants is

better. Then if there are already many diners in restaurant B, the information that you

can infer from their choices may be more powerful than your own private information, in

which case it would in fact make sense for you to join them regardless of your own private
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492 CHAPTER 16. INFORMATION CASCADES

information. In this case, we say that herding, or an information cascade, has occurred. This

terminology, as well as this example, comes from the work of Banerjee [39]; the concept was

also developed in other work around the same time by Bikhchandani, Hirshleifer, and Welch

[58, 405].

Roughly, then, an information cascade has the potential to occur when people make

decisions sequentially, with later people watching the actions of earlier people, and from

these actions inferring something about what the earlier people know. In our restaurant

example, when the first diners to arrive chose restaurant B, they conveyed information to

later diners about what they knew. A cascade then develops when people abandon their

own information in favor of inferences based on earlier people’s actions.

What is interesting here is that individuals in a cascade are imitating the behavior of

others, but it is not mindless imitation. Rather, it is the result of drawing rational inferences

from limited information. Of course, imitation may also occur due to social pressure to

conform, without any underlying informational cause, and it is not always easy to tell these

two phenomena apart. Consider for example the following experiment performed by Milgram,

Bickman, and Berkowitz in the 1960s [294]. The experimenters had groups of people ranging

in size from just one person to as many as fifteen people stand on a street corner and stare

up into the sky. They then observed how many passersby stopped and also looked up at

the sky. They found that with only one person looking up, very few passersby stopped. If

five people were staring up into the sky, then more passersby stopped, but most still ignored

them. Finally, with fifteen people looking up, they found that 45% of passersby stopped and

also stared up into the sky.

The experimenters interpreted this result as demonstrating a social force for conformity

that grows stronger as the group conforming to the activity becomes larger. But another

possible explanation — essentially, a possible mechanism giving rise to the conformity ob-

served in this kind of situation — is rooted in the idea of information cascades. It could be

that initially the passersby saw no reason to look up (they had no private or public infor-

mation that suggested it was necessary), but with more and more people looking up, future

passersby may have rationally decided that there was good reason to also look up (since

perhaps those looking up knew something that the passersby didn’t know).

Ultimately, information cascades may be at least part of the explanation for many types

of imitation in social settings. Fashions and fads, voting for popular candidates, the self-

reinforcing success of books placed highly on best-seller lists, the spread of a technological

choice by consumers and by firms, and the localized nature of crime and political movements

can all be seen as examples of herding, in which people make decisions based on inferences

from what earlier people have done.
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Informational effects vs. Direct-Benefit Effects. There is a fundamentally different

class of rational reasons why you might want to imitate what other people are doing. You

may want to copy the behavior of others if there is a direct benefit to you from aligning

your behavior with their behavior. For example, consider the first fax machines to be sold.

A fax machine is useless if no one else owns one, and so in evaluating whether to buy one,

it’s very important to know whether there are other people who own one as well — not just

because their purchase decisions convey information, but because they directly affect the

fax machine’s value to you as a product. A similar argument can be made for computer

operating systems, social networking sites, and other kinds of technology where you directly

benefit from choosing an option that has a large user population.

This type of direct-benefit effect is different from the informational effects we discussed

previously: here, the actions of others are affecting your payoffs directly, rather than indi-

rectly by changing your information. Many decisions exhibit both information and direct-

benefit effects — for example, in the technology-adoption decisions just discussed, you po-

tentially learn from others’ decisions in addition to benefitting from compatibility with them.

In some cases, the two effects are even in conflict: if you have to wait in a long line to get

into a popular restaurant, you are choosing to let the informational benefits of imitating

others outweigh the direct inconvenience (from waiting) that this imitation causes you.

In this chapter, we develop some simple models of information cascades; in the next

chapter, we do this for direct-benefit effects. One reason to develop minimal, stylized models

for these effects is to see whether the stories we’ve been telling can have a simple basis —

and we will see that much of what we’ve been discussing at an informal level can indeed be

represented in very basic models of decision-making by individuals.

16.2 A Simple Herding Experiment

Before delving into the mathematical models for information cascades [39, 58, 405], we start

with a simple herding experiment created by Anderson and Holt [15, 16] to illustrate how

these models work.

The experiment is designed to capture situations with the basic ingredients from our

discussion in the previous section:

(a) There is a decision to be made — for example, whether to adopt a new technology,

wear a new style of clothing, eat in a new restaurant, or support a particular political

position.

(b) People make the decision sequentially, and each person can observe the choices made

by those who acted earlier.

(c) Each person has some private information that helps guide their decision.
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(d) A person can’t directly observe the private information that other people know, but

he or she can make inferences about this private information from what they do.

We imagine the experiment taking place in a classroom, with a large group of students

as participants. The experimenter puts an urn at the front of the room with three marbles

hidden in it; she announces that there is a 50% chance that the urn contains two red marbles

and one blue marble, and a 50% chance the urn contains two blue marbles and one red marble.

In the former case, we will say that it is a “majority-red” urn, and in the latter case, we will

say that it is a “majority-blue” urn.1

Now, one by one, each student comes to the front of the room and draws a marble from

the urn; he looks at the color and then places it back in the urn without showing it to the

rest of the class. The student then guesses whether the urn is majority-red or majority-

blue and publicly announces this guess to the class. (We assume that at the very end of

the experiment, each student who has guessed correctly receives a monetary reward, while

students who have guessed incorrectly receive nothing.) The public announcement is the

key part of the set-up: the students who have not yet had their turn don’t get to see which

colors the earlier students draw, but they do get to hear the guesses that are being made.

This parallels our original example with the two restaurants: one-by-one, each diner needs

to guess which is the better restaurant, and while they don’t get to see the reviews read by

the earlier diners, they do get to see which restaurant these earlier diners chose.

Let’s now consider what we should expect to happen when this experiment is performed.

We will assume that all the students reason correctly about what to do when it is their

turn to guess, using everything they have heard so far. We will keep the analysis of the

experiment informal, and later use a mathematical model to justify it more precisely.

We organize the discussion by considering what happens with each student in order.

Things are fairly straightforward for the first two students; they become interesting once we

reach the third student.

• The First Student. The first student should follow a simple decision rule for making a

guess: if he sees a red marble, it is better to guess that the urn is majority-red; and if

he sees a blue marble, it is better to guess that the urn is majority-blue. (This is an

intuitively natural rule, and — as with the other conclusions we draw here — we will

justify it later mathematically using the model we develop in the subsequent sections.)

This means the first student’s guess conveys perfect information about what he has

seen.

1It’s important that the students believe this statement about probabilities. So you can imagine, if you
like, that the experimenter has actually filled two urns with marbles. One has two red marbles and one blue
marble, and the other urn contains two blue marbles and one red marble. One of these urns is selected at
random, with equal probability on each urn, and this is the urn used in the experiment.
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• The Second Student. If the second student sees the same color that the first student

announced, then her choice is simple: she should guess this color as well.

Suppose she sees the opposite color — say that she sees red while the first guess was

blue. Since the first guess was exactly what the first student saw, the second student

can essentially reason as though she got to draw twice from the urn, seeing blue once

and red once. In this case, she is indifferent about which guess to make; we will assume

in this case that she breaks the tie by guessing the color she saw. Thus, whichever

color the second student draws, her guess too conveys perfect information about what

she has seen.

• The Third Student. Things start to get interesting here. If the first two students have

guessed opposite colors, then the third student should just guess the color he sees,

since it will effectively break the tie between the first two guesses.

But suppose the first two guesses have been the same — say they’ve both been blue —

and the third student draws red. Since we’ve decided that the first two guesses convey

perfect information, the third student can reason in this case as though he saw three

draws from the urn: two blue, and one red. Given this information, he should guess

that the urn is majority-blue, ignoring his own private information (which, taken by

itself, suggested that the urn is majority-red).

More generally, the point is that when the first two guesses are the same, the third

student should guess this color as well, regardless of which color he draws from the

urn. And the rest of class will only hear his guess; they don’t get to see which color

he’s drawn. In this case, an information cascade has begun. The third student makes

the same guess as the first two, regardless of which color he draws from the urn, and

hence regardless of his own private information.

• The Fourth Student and Onward. For purposes of this informal discussion, let’s consider

just the “interesting” case above, in which the first two guesses were the same —

suppose they were both blue. In this case, we’ve argued that the third student will

also announce a guess of blue, regardless of what he actually saw.

Now consider the situation faced by the fourth student, getting ready to make a guess

having heard three guesses of “blue” in a row. She knows that the first two guesses

conveyed perfect information about what the first two students saw. She also knows

that, given this, the third student was going to guess “blue” no matter what he saw

— so his guess conveys no information.

As a result, the fourth student is in exactly the same situation — from the point of

view of making a decision — as the third student. Whatever color she draws, it will
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be outweighed by the two draws of blue by the first two students, and so she should

guess “blue” regardless of what she sees.

This will continue with all the subsequent students: if the first two guesses were “blue,”

then everyone in order will guess “blue” as well. (Of course, a completely symmetric

thing happens if the first two guesses are “red”.) An information cascade has taken

hold: no one is under the illusion that every single person is drawing a blue marble,

but once the first two guesses turn out “blue,” the future announced guesses become

worthless and so everyone’s best strategy is to rely on the limited genuine information

they have available.

In the next section, we’ll discuss a model of decision-making under uncertainty that

justifies the guesses made by the students. More generally, our discussion hasn’t considered

every possible eventuality (for example, what should you do if you’re the sixth student

and you’ve heard the guesses “blue, red, red, blue, blue”?), but our subsequent model will

actually predict an outcome for any sequence of guesses.

For now, though, let’s think about the particular scenario discussed here — the way in

which a cascade takes place as long as the first two guesses are the same. Although the setting

is very stylized, it teaches us a number of general principles about information cascades.

First, it shows how easily they can occur, given the right structural conditions. It also

shows how a bizarre pattern of decisions — each of a large group of students making exactly

the same guess — can take place even when all the decision-makers are being completely

rational.

Second, it shows that information cascades can lead to non-optimal outcomes. Suppose

for example that we have an urn that is majority-red. There is a 1
3 chance that the first

student draws a blue marble, and a 1
3 chance that the second student draws a blue marble;

since these draws are independent, there is a 1
3 · 1

3 = 1
9 chance that both do. In this case,

both of the first two guesses will be “blue”; so, as we have just argued, all subsequent guesses

will be “blue” — and all of these guesses will be wrong, since the urn is majority-red. This
1
9 chance of a population-wide error is not ameliorated by having many people participate,

since under rational decision-making, everyone will guess blue if the first two guesses are

blue, no matter how large the group is.

Third, this experiment illustrates that cascades — despite their potential to produce

long runs of conformity — can be fundamentally very fragile. Suppose, for example, that

in a class of 100 students, the first two guesses are “blue,” and all subsequent guesses are

proceeding — as predicted — to be “blue” as well. Now, suppose that students 50 and 51

both draw red marbles, and they each “cheat” by showing their marbles directly to the rest

of the class. In this case, the cascade has been broken: when student 52 gets up to make a

guess, she has four pieces of genuine information to go on: the colors observed by students

1, 2, 50, and 51. Since two of these colors are blue and two are red, she should make the
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Figure 16.1: Two events A and B in a sample space, and the joint event A ∩B.

guess based on her own draw, which will break the tie.

The point is that everyone knew the initial run of 49 “blue” guesses had very little

information supporting it, and so it was easy for a fresh infusion of new information to

overturn it. This is the essential fragility of information cascades: even after they have

persisted for a long time, they can be overturned with comparatively little effort.2

This style of experiment has generated a significant amount of subsequent research in

its own right, and understanding the extent to which human subjects follow the type of

behavior described above under real experimental conditions is a subtle issue [99, 220]. For

our purposes, however, the simple description of the experiment serves as a vivid illustration

of some of the basic properties of information cascades in a controlled setting. Having now

developed some of these basic properties, we turn to the formulation of a model that lets us

reason precisely about the decision-making that takes place during a cascade.

16.3 Bayes’ Rule: A Model of Decision-Making Under
Uncertainty

If we want to build a mathematical model for how information cascades occur, it will nec-

essarily involve people asking themselves questions like, “What is the probability this is the

better restaurant, given the reviews I’ve read and the crowds I see in each one?” Or, “What

2It is important to note that not all imitative effects are so easy to overturn. As we will see in the
next chapter, for example, imitation based on direct-benefit effects can be very difficult to reverse once it is
underway.
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is the probability this urn is majority-red, given the marble I just drew and the guesses I’ve

heard?” In other words, we need a way to determine probabilities of events given information

that is observed.

Conditional Probability and Bayes’ Rule. We will be computing the probability of

various events, and using these to reason about decision-making. In the context of the

experiment from Section 16.2, an event could be “The urn is majority-blue,” or “the first

student draws a blue marble.” Given any event A, we will denote its probability of occuring

by Pr [A]. Whether an event occurs or not is the result of certain random outcomes (which

urn was placed at the front of the room, which marble a particular student grabbed when

they reached in, and so forth). We therefore imagine a large sample space, in which each point

in the sample space consists of a particular realization for each of these random outcomes.

Given a sample space, events can be pictured graphically as in Figure 16.1: the unit-area

rectangle in the figure represents the sample space of all possible outcomes, and the event A

is then a region within this sample space — the set of all outcomes where event A occurs.

In the figure, the probability of A corresponds to the area of this region. The relationship

between two events can be illustrated graphically as well. In Figure 16.1 we see two events

A and B. The area where they overlap corresponds to the joint event when both A and B

occur. This event is the intersection of A and B, and it’s denoted by A ∩B.

If we think about the sample questions at the start of this section, we see that it is

not enough to talk about the probability of an event A; rather, we need to consider the

probability of A, given that some other event B has occurred. For example, A may be the

event that the urn in the experiment from Section 16.2 is majority-blue, and B may be the

event that the ball you’ve drawn is blue. We will refer to this quantity as the conditional

probability of A given B, and denote it by Pr [A | B]. Again, the graphical depiction in

Figure 16.1 is useful: to determine the conditional probability of A given B, we assume

that we are in the part of the sample space corresponding to B, and we want to know the

probability that we are also in A (that is, in A ∩B). We can think of this as the fraction of

the area of region B occupied by A ∩B, and so we define

Pr [A | B] =
Pr [A ∩B]

Pr [B]
. (16.1)

Similarly, the conditional probability of B given A is

Pr [B | A] =
Pr [B ∩ A]

Pr [A]
=

Pr [A ∩B]

Pr [A]
, (16.2)

where the second equality follows simply because A ∩B and B ∩ A are the same set.

Rewriting (16.1) and (16.2), we have

Pr [A | B] · Pr [B] = Pr [A ∩B] = Pr [B | A] · Pr [A] , (16.3)
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and therefore, dividing through by Pr [B],

Pr [A | B] =
Pr [A] · Pr [B | A]

Pr [B]
. (16.4)

Equation (16.4) is called Bayes’ Rule. There is also a bit of extra useful terminology sur-

rounding Bayes’ Rule. When we want to make explicit that we’re interested in the effect of

event B on the probability of an event A, we refer to Pr [A] as the prior probability of A,

since it reflects our understanding of the probability of A without knowing anything about

whether B has occurred. Correspondingly, we refer to Pr [A | B] as the posterior probability

of A given B, since it reflects our new understanding of the probability of A now that we

know B has occurred. The effect of knowing B is thus captured in the change from the prior

probability of A to the posterior probability of A, using Equation (16.4).

An Example of Bayes’ Rule. As noted above, we will be applying Bayes’ Rule in cases

where a decision-maker is assessing the probability that a particular choice is the best one,

given the event that he has received certain private information and/or observed certain

other decisions. To get used to Bayes’ Rule, however, we first work through a basic example

that illustrates how it is typically applied.

The example involves eyewitness testimony. Suppose that in some city 80% of taxi cabs

are black and the remaining 20% percent are yellow. A witness to a hit-and-run accident

involving a taxi states that the cab involved was yellow. Suppose that eyewitness testimony is

imperfect in the sense that witnesses sometimes misidentify the colors of cabs. In particular,

let’s suppose that if a taxi is yellow then a witness will claim it is yellow after the fact 80%

of the time; and if it is black, they will claim it is black 80% of the time.

Interpreting eyewitness testimony, therefore, is at some level a question of conditional

probability: what is the probability the cab is yellow (or black), given that the witness says

it is yellow? Introducing some notation, let true denote the true color of the cab, and let

report denote the reported color of the cab; let Y denote yellow and B denote black. We

are looking for the value of Pr [true = Y | report = Y ].

The data we have does not directly tell us the answer to this question, but we can

determine the answer using Bayes’ Rule. Applying Equation (16.4) with A equal to the

event true = Y and B equal to the event report = Y , we have

Pr [true = Y | report = Y ] =
Pr [true = Y ] · Pr [report = Y | true = Y ] ·

Pr [report = Y ]
. (16.5)

Now, we’ve been told that Pr [report = Y | true = Y ] is 0.8 (this is the accuracy of eyewitness

testimony) and that Pr [true = Y ] is 0.2 (this is the frequency of yellow taxi cabs, and hence

provides the prior probability of the event true = Y ). We can also figure out the denominator

with a little work, as follows. There are two ways for a witness to report that a cab is yellow:
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one is for the cab to actually be yellow, and the other is for it to actually be black. The

probability of getting a report of yellow via the former option is

Pr [true = Y ] · Pr [report = Y | true = Y ] = 0.2 · 0.8 = 0.16,

and the probability of getting a report of yellow via the latter option is

Pr [true = B] · Pr [report = Y | true = B] = 0.8 · 0.2 = 0.16.

The probability of a report of yellow is the sum of these two probabilities,

Pr [report = Y ] = Pr [true = Y ] · Pr [report = Y | true = Y ] +

Pr [true = B] · Pr [report = Y | true = B]

= 0.2 · 0.8 + 0.8 · 0.2 = 0.32.

We can now put everything together via Equation (16.5) so as to get

Pr [true = Y | report = Y ] =
Pr [true = Y ] · Pr [report = Y | true = Y ]

Pr [report = Y ]

=
0.2 · 0.8

0.32
= 0.5.

So the conclusion is that if the witness says the cab was yellow, it is in fact equally

likely to have been yellow or black. Since the frequency of black and yellow cabs makes

black substantially more likely in the absence of any other information (0.8 versus 0.2), the

witness’s report had a substantial effect on our beliefs about the color of the particular cab

involved. But the report should not lead us to believe that the cab was in fact more likely

to have been yellow than black.3

A second example: Spam filtering. As the example with taxi cabs illustrates, Bayes’

Rule is a fundamental way to make inferences from observations, and as such it is used in a

wide variety of settings. One application where it has been very influential is in e-mail spam

detection — automatically filtering unwanted e-mail out of a user’s incoming e-mail stream.

Bayes’ Rule was a crucial conceptual ingredient in the first generation of e-mail spam filters,

and it continues to form part of the foundation for many spam filters [186].

We can appreciate the connection between Bayes’ Rule and spam filtering through the

following example. Suppose that you receive a piece of e-mail whose subject line contains

3Kahneman and Tversky run an experiment with a similar example which shows that people sometimes
do not make predictions according to Bayes’ Rule [228]. In this their experiment, subjects place too much
weight on their observations and too little weight on prior probabilities. The effect of errors in predictions
on actions, and the subsequent effect on cascades is an interesting topic, but we will not address it here.
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the phrase “check this out” (a popular phrase among spammers). Based just on this (and

without looking at the sender or the message content), what is the chance the message is

spam?

This is already a question about conditional probability: we’re asking for the value of

Pr [message is spam | subject contains “check this out”] .

To make this equation and the ones that follow a bit simpler to read, let’s abbreviate message

is spam to just spam, and abbreviate subject contains “check this out” to just “check this

out”; so we want the value of

Pr [spam | “check this out”] .

To determine this value, we need to know some facts about your e-mail and the general

use of the phrase “check this out” in subject lines. Suppose that 40% of all your e-mail is

spam and the remaining 60% is e-mail you want to receive. Also, suppose that 1% of all

spam messages contain the phrase “check this out” in their subject lines, while 0.4% of all

non-spam messages contain this phrase. Writing these in terms of probabilities, it says that

Pr [spam] = 0.4; this is the prior probability that an incoming message is spam (without

conditioning on events based on the message itself). Also, we have

Pr [“check this out” | spam] = .01

and

Pr [“check this out” | not spam] = .004

We’re now in a situation completely analogous to the calculations involving eyewitness tes-

timony: we can use Bayes’ Rule to write

Pr [spam | “check this out”] =
Pr [spam] · Pr [“check this out” | spam]

Pr [“check this out” ]
.

Based on what we know, we can determine that the numerator is .4 · .01 = .004. For the

denominator, as in the taxicab example, we note that there are two ways for a message

to contain “check this out” — either by being spam or by not being spam. As in that

calculation,

Pr [“check this out”] = Pr [spam] · Pr [“check this out” | spam] +

Pr [not spam] · Pr [“check this out” | not spam]

= .4 · .01 + .6 · .004 = .0064.

Dividing numerator by denominator, we get our answer:

Pr [spam | “check this out”] =
.004

.0064
=

5

8
= .625.
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In other words, although spam (in this example) forms less than half of your incoming e-mail,

a message whose subject line contains the phrase “check this out” is — in the absence of

any other information — more likely to be spam than not.

We can therefore view the presence of this phrase in the subject line as a weak “signal”

about the message, providing us with evidence about whether it’s spam. In practice, spam

filters built on Bayes’ Rule look for a wide range of different signals in each message — the

words in the message body, the words in the subject, properties of the sender (do you know

them? what kind of an e-mail address are they using?), properties of the mail program used

to compose the message, and other features. Each of these provides its own estimate for

whether the message is spam or not, and spam filters then combine these estimates to arrive

at an overall guess about whether the message is spam. For example, if we also knew that

the message above came from someone you send mail to every day, then presumably this

competing signal — strongly indicating that the message is not spam — should outweigh

the presence of the phrase “check this out” in the subject.

16.4 Bayes’ Rule in the Herding Experiment

Let’s now use Bayes’ Rule to justify the reasoning that the students used in the simple herding

experiment from Section 16.2. First, notice that each student’s decision is intrinsically based

on determining a conditional probability: each student is trying to estimate the conditional

probability that the urn is majority-blue or majority-red, given what she has seen and heard.

To maximize her chance of winning the monetary reward for guessing correctly, she should

guess majority-blue if

Pr [majority-blue | what she has seen and heard] >
1

2
and guess majority-red otherwise. If the two conditional probabilities are both exactly 0.5,

then it doesn’t matter what she guesses.

We know the following facts from the set-up of the experiment, before anyone has drawn

any marbles. First, the prior probabilities of majority-blue and majority-red are each 1
2 :

Pr [majority-blue] = Pr [majority-red] =
1

2
.

Also, based on the composition of the two kinds of urns,

Pr [blue | majority-blue] = Pr [red | majority-red] =
2

3
.

Now, following the scenario from Section 16.2, let’s suppose that the first student draws

a blue marble. He therefore wants to determine Pr [majority-blue | blue], and just as in the

examples from Section 16.3, he can use Bayes’ Rule to calculate

Pr [majority-blue | blue] =
Pr [majority-blue] · Pr [blue | majority-blue]

Pr [blue]
. (16.6)
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The numerator is 1
2 · 2

3 = 1
3 . For the denominator, we reason just as in Section 16.3 by noting

that there are two possible ways to get a blue marble — if the urn is majority-blue, or if it

is majority-red:

Pr [blue] = Pr [majority-blue] · Pr [blue | majority-blue] +

Pr [majority-red] · Pr [blue | majority-red]

=
1

2
· 2

3
+

1

2
· 1

3
=

1

2
.

The answer Pr [blue] = 1
2 makes sense, given that the roles of blue and red in this experiment

are completely symmetric.

Dividing numerator by denominator, we get

Pr [majority-blue | blue] =
1/3

1/2
=

2

3
.

Since this conditional probability is greater than 1
2 , we get the intuitive result that the first

student should guess majority-blue when he sees a blue marble. Note that in addition to

providing the basis for the guess, Bayes’ Rule also provides a probability, namely 2
3 , that the

guess will be correct.

The calculation is very similar for the second student, and we skip this here to move

on to the calculation for the third student, where a cascade begins to form. Let’s suppose,

as in the scenario from Section 16.2, that the first two students have announced guesses of

blue, and the third student draws a red marble. As we discussed there, the first two guesses

convey genuine information, so the third student knows that there have been three draws

from the urn, consisting of the sequence of colors blue, blue, and red. What he wants to

know is

Pr [majority-blue | blue, blue, red]

so as to make a guess about the urn. Using Bayes’ Rule we get

Pr [majority-blue | blue, blue, red] =
Pr [majority-blue] · Pr [blue, blue, red | majority-blue]

Pr [blue, blue, red]
.

(16.7)

Since the draws from the urn are independent, the probability Pr [blue, blue, red | majority-blue]

is determined by multiplying the probabilities of the three respective draws together:

Pr [blue, blue, red | majority-blue] =
2

3
· 2

3
· 1

3
=

4

27
.

To determine Pr [blue, blue, red], as usual we consider the two different ways this sequence

could have happened — if the urn is majority-blue, or if it is majority-red:

Pr [blue, blue, red] = Pr [majority-blue] · Pr [blue, blue, red | majority-blue] +

Pr [majority-red] · Pr [blue, blue, red | majority-red]

=
1

2
· 2

3
· 2

3
· 1

3
+

1

2
· 1

3
· 1

3
· 2

3
=

6

54
=

1

9
.
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Plugging all this back into Equation (16.7), we get

Pr [majority-blue | blue, blue, red] =
4
27 · 1

2
1
9

=
2

3
.

Therefore, the third student should guess majority-blue (from which he will have a 2
3 chance

of being correct) — this confirms our intuitive observation in Section 16.2 that the student

should ignore what he sees (red) in favor of the two guesses he’s already heard (both blue).

Finally, once these three draws from the urn have taken place, all future students will have

the same information as the third student, and so they will all perform the same calculation,

resulting in an information cascade of blue guesses.

16.5 A Simple, General Cascade Model

Let’s return to the motivation for the herding experiment in Section 16.2: the experiment

served as a stylized metaphor for any situation in which people make decisions sequentially,

basing these decisions on a combination of their own private information and observations

of what earlier people have done. We now formulate a model that covers such situations in

general. We will see that Bayes’ Rule predicts in this general model that cascades will form,

with probability tending to 1 as the number of people goes to infinity.

Formulating the Model. Consider a group of people (numbered 1, 2, 3, . . .) who will

sequentially make decisions — that is, individual 1 will decide first, then individual 2 will

decide, and so on. We will describe the decision as a choice between accepting or rejecting

some option: this could be a decision about whether to adopt a new technology, wear a new

fashion, eat in a new restaurant, commit a crime, vote for a particular political candidate,

or choose one route to a common destination rather than an alternative route.

First model ingredient: States of the world. At the start of everything, before any indi-

vidual has made a decision, we assume that the world is randomly placed into one of two

possible states: it is either placed in a state in which the option is actually a good idea, or

a state in which the option is actually a bad idea. We imagine that the state of the world

is determined by some initial random event that the individuals can’t observe, but they will

try to use what they observe to make inferences about this state. For example, the world is

either in a state where the new restaurant is good or a state where it is bad; the individuals

in the model know that it was randomly placed in one of these two states, and they’re trying

to figure out which.

We write the two possible states of the world as G, representing the state where the

option is a good idea, and B, representing the state where the option is a bad idea. We

suppose that each individual knows the following fact: the initial random event that placed
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the world into state G or B placed it into state G with probability p, and into state B with

probability 1 − p. This will serve as the prior probabilities of G and B; in other words,

Pr [G], and hence Pr [B | =] 1− Pr [G] = 1− p.

Second model ingredient: Payoffs. Each individual receives a payoff based on her decision

to accept or reject the option. If the individual chooses to reject the option, she receives a

payoff of 0. The payoff for accepting depends on whether the option is a good idea or a bad

idea. Let’s suppose that if the option is a good idea, then the payoff obtained from accepting

it is a positive number vg > 0. If the option is a bad idea, then the payoff is a negative

number vb < 0. We will also assume that the expected payoff from accepting in the absence

of other information is equal to 0; in other words, vgp + vb(1 − p) = 0. That is, before an

individual gets any additional information, the expected payoff from accepting is the same

as the payoff from rejecting.

Third model ingredient: Signals. In addition to the payoffs, we also want to model the

effect of private information. We assume that before any decisions are made, each individual

gets a private signal that provides information about whether accepting is a good idea or

a bad idea. The private signal is designed to model private information that the person

happens to know, beyond just the prior probability p that accepting the option is a good

idea.

The private signal does not convey perfect certainty about what to do (since we want

to model individual uncertainty even after the signal comes in), but it does convey useful

information. Specifically, there are two possible signals: a high signal (denoted H), suggesting

that accepting is a good idea; and a low signal (denoted L), suggesting that accepting

is a bad idea. We can make this precise by saying that if accepting is in fact a good

idea, then high signals are more frequent than low signals: Pr [H | G] = q > 1
2 , while

Pr [L | G] = 1− q < 1
2 . Similarly, if accepting the option is a bad idea, then low signals are

more frequent: Pr [L | B] = q and Pr [H | B] = 1− q, for this same value of q > 1
2 . This is

summed up in the table in Figure 16.2.

Signals

States
B G

L q 1− q
H 1− q q

Figure 16.2: The probability of receiving a low or high signal, as a function of the two
possible states of the world (G or B).

Notice how the herding experiment from Section 16.2 fits the properties of this more

abstract model. The two possible states of the world are that the urn placed at the front

of the room was majority-blue, or that it was majority-red. We can think of “accepting” as

guessing “majority-blue”; this is a good idea (G) if the true urn really is majority-blue and
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a bad idea (B) otherwise. The prior probability of accepting being a good idea is p = 1
2 .

The private information in the experiment is the color of the ball the individual draws; it’s

a “high” signal if it is blue, and so Pr [H | G] = Pr [blue | majority-blue] = q = 2
3 .

Similarly, to return to the two-restaurant example from the opening section, “accepting”

could correspond to choosing the first restaurant A; it’s a good idea if A restaurant is actually

better than the second restaurant B. The private information could be a review that you read

of the first restaurant, with a high signal corresponding to a review comparing it favorably

to restaurant B next door. If choosing the first restaurant is actually good, there should be

a higher number of such reviews, so Pr [H | G] = q > 1
2 .

Individual decisions. We now want to model how people should make decisions about

accepting or rejecting. First, let’s consider how someone should do this based only on their

own private signal, and then consider the effect of observing the earlier decisions of others.

Suppose that a person gets a high signal. This shifts their expected payoff from vgPr [G]+

vbPr [B] = 0 to vgPr [G | H] + vbPr [B | H]. To determine this new expected payoff, we use

Bayes’ Rule; the calculation is just like the ones from the previous sections.

Pr [G | H] =
Pr [G] · Pr [H | G]

Pr [H]

=
Pr [G] · Pr [H | G]

Pr [G] · Pr [H | G] + Pr [B] · Pr [H | B]

=
pq

pq + (1− p)(1− q)
> p,

where in the second line we compute the denominator Pr [H] as usual by expanding out the

two possible ways of getting a high signal (if the option is a good idea or a bad idea); and

the final inequality follows since pq + (1− p)(1− q) < pq + (1− p)q = q in the denominator.

This result makes good sense: A high signal is more likely to occur if the option is good

than if it is bad, so if an individual observes a high signal they raise their estimate of the

probability that the option is good. As a result, the expected payoff shifts from 0 to a

positive number, and so they should accept the option.

A completely analogous calculation shows that if the individual receives a low signal,

they should reject the option.

Multiple signals. We know from the herding experiment that an important step in rea-

soning about how people make decisions in sequence is to understand how an individual

should use the evidence of multiple signals. Using Bayes’ Rule, it’s not hard to reason di-

rectly about an individual’s decision when they get a sequence S of independently generated

signals consisting of a high signals and b low signals, interleaved in some fashion. We do this

below, deriving the following facts:
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(i) the posterior probability Pr [G | S] is greater than the prior Pr [G] when a > b;

(ii) the posterior Pr [G | S] is less than the prior Pr [G] when a < b; and

(iii) the two probabilities Pr [G | S] and Pr [G] are equal when a = b.

As a result, individuals should accept the option when they get more high signals than low

signals, and reject it when they get more low signals than high signals; they are indifferent

when they get the same number of each. In other words, in this simple setting with a

sequence of signals, individuals can decide according to a majority-vote over the signals they

receive.

In the remainder of this section, we justify these facts (i)-(iii), using Bayes’ Rule and a

bit of algebra. In the next section, we then explore the consequences of this for sequential

decision-making in this model.

To apply Bayes’ Rule, we write

Pr [G | S] =
Pr [G] · Pr [S | G]

Pr [S]
, (16.8)

where S is a sequence with a high signals and b low signals. To compute Pr [S | G] in

the numerator, we note that since the signals are generated independently, we can simply

multiply their probabilities: this gives us a factors of q and b factors of (1 − q), and so

Pr [S | G] = qa(1− q)b.

To compute Pr [S], we consider that S can arise if the option is a good idea or a bad

idea, so

Pr [S] = Pr [G] · Pr [S | G] + Pr [B] · Pr [S | B]

= pqa(1− q)b + (1− p)(1− q)aqb.

Plugging this back into Equation (16.8), we get

Pr [G | S] =
pqa(1− q)b

pqa(1− q)b + (1− p)(1− q)aqb
.

What we want to know is how this expression compares to p. One way to answer this question

is as follows. If we were to replace the second term in the denominator by (1− p)qa(1− q)b,

then the denominator would become pqa(1− q)b + (1− p)qa(1− q)b = qa(1− q)b, and so the

whole expression would become
pqa(1− q)b

qa(1− q)b
= p.

So the question is: does this replacement make the denominator smaller or larger?



508 CHAPTER 16. INFORMATION CASCADES

(i) If a > b, then this replacement makes the denominator larger, since q > 1
2 and we now

have more factors of q and fewer factors of 1 − q. Since the denominator gets larger,

the overall expression gets smaller as it is converted to a value of p, and therefore

Pr [G | S] > p = Pr [G].

(ii) If a < b, the argument is symmetric: this replacement makes the denominator smaller,

and hence the overall expression larger. So Pr [G | S] < p = Pr [G].

(ii) Finally, if a = b, then this replacement keeps the value of the denominator the same,

and so Pr [G | S] = p = Pr [G].

16.6 Sequential Decision-Making and Cascades

Let’s now consider what happens when individuals make decisions in sequence. As before, we

want to capture situations in which each person can see what earlier people do, but not what

they know. In our model, this means that when a given person decides whether to accept

or reject the option, they have access to their own private signal and also the accept/reject

decisions of all earlier people. Crucially, however, they do not see the actual private signals

of any of these earlier people.

The reasoning is now very similar to what we did for the sequence of students in the

herding experiment from Section 16.2. To start, let’s note the close parallels to our discussion

there.

• Person 1 will follow his own private signal, as we just saw in Section 16.5.

• Person 2 will know that person 1’s decision reveals their private signal, and so it as

though person 2 gets two signals. If these signals are the same, person 2’s decision is

easy. If they are different, then as we saw at the end of Section 16.5, person 2 will be

indifferent between accepting and rejecting. Here we will assume she follows her own

private signal. Thus, either way, person 2 is following her own signal.

• As a result, person 3 knows that person 1 and person 2 both acted on their private

signals, so it is as though person 3 has received three independent signals (the two he

observes, and his own). We know from the argument in Section 16.5 that person 3 will

follow the majority signal (high or low) in choosing whether to accept or reject.

This means that if person 1 and person 2 made opposite decisions (i.e. they received

opposite signals), then person 3 will use his own signal as the tie-breaker. Hence future

people will know that person 3’s decision was based on his own signal, and so they can

use this information in their own decisions.
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Figure 16.3: .

On the other hand, if person 1 and person 2 made the same decision (i.e. had the

same signal), then person 3 will follow this regardless of what his own signal says.

Hence future people will know that person 3’s decision conveys no information about

his signal, and future people will all be in the same position as person 3. In this case, a

cascade has begun. That is, we are in a situation where no individual’s decision can be

influenced by his own signal. No matter what they see, every individual from person

3 on will make the same decision that 1 and 2 made.

Let’s now consider how this process unfolds through future people beyond person 3. In

particular, let’s consider the perspective of a person numbered N . Suppose that person

N knows that everyone before her has followed their own signal — that is, suppose the

accept/reject decisions of these earlier people exactly coincides with whether they received

a high or low signal, and person N knows this. There are several possible cases to consider.

• If the number of acceptances among the people before N is equal to the number of

rejections, then N ’s signal will be the tie-breaker, and so N will follow her own signal.

• If the number of acceptances among the people before N differs from the number of

rejections by one, then either N ’s private signal will make her indifferent, or it will

reinforce the majority signal. Either way, N will follow her private signal (since we

assume a person follows their own signal in the case of indifference).

• If the number of acceptances among the people before N differs from the number of

rejections by two or more, then however N ’s private signal turns out, it won’t outweigh
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this earlier majority. As a result, N will follow the earlier majority and ignore her own

signal.

Moreover, in this case, the people numbered N + 1, N + 2, and onward will know that

person N ignored her own signal (whereas we’ve assumed that all earlier people were

known to have followed their private signals). So they will each be in exactly the same

position as N . This means that each of them too will ignore their own signals and

follow the majority, and hence a cascade has begun.

We can therefore sum up the behavior of the decision-making process as follows. As long

as the number of acceptances differs from the number of rejections by at most one, each

person in sequence is simply following their own private signal in deciding what to do. But

once the number of acceptances differs from the number of rejections by two or more, a

cascade takes over, and everyone simply follows the majority decision forever. Figure 16.3

illustrates this for a sample outcome of the process, in which we plot the difference between

the number of acceptances and the number of rejections over time as people make decisions.

This plot moves up or down by one each time a new decision is made, since either the number

of acceptances or the number of rejections grows by exactly one with each decision. Once

the difference between the number of acceptances and the number of rejections escapes from

the narrow horizontal ribbon around zero — that is, once the plots moves at least two steps

away from the x-axis — a cascade begins and runs forever.

Finally, it is very hard for this difference to remain in such a narrow interval (between

−1 and +1) forever. For example, during the period of time when people are following their

own signals, if three people in a row ever happen to get the same signal, a cascade will

definitely have begun. (Note that a cascade can begin even without this happening, but you

can check that three matching signals in a row are always enough to make one begin.) Now,

let’s argue that the probability of finding three matching signals in a row is converging to

1 as the number of people N goes to infinity. To see why, suppose we divide the first N

people into blocks of three consecutive people each (people 1, 2, 3, people 4, 5, 6, people

7, 8, 9, and so on). Then the people in any one block will receive identical signals with

probability q3 + (1 − q)3. The probability that none of these blocks consists of identical

signals is therefore (1− q3 − (1− q)3)N/3. As N goes to infinity this quantity goes to 0.

What this short argument shows is that, as the number of people goes to infinity, the

probability a cascade begins converges to 1. Thus, in the limit, a cascade takes place in this

model almost surely.

Having now completed the analysis, it is worth making a few final observations. First,

this is ultimately an extremely simple model of individual decision-making. In more general

versions, for example, it could well be the case that people don’t see all the decisions made

earlier but only some of them; that not all private signals convey equal information; or

that not everyone receives the same payoffs [2, 37, 185]. Many of these more general variants
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become much more complicated to analyze, and they can differ in their specifics (for example,

the condition for a cascade to begin is clearly not always as simple as having the number of

acceptances differ from the number of rejections by at least two). But the general structure

of the conclusions from these models tends to be qualitatively similar: when people can

see what others do but not what they know, there is an initial period when people rely on

their own private information, but as time goes on, the population can tip into a situation

where people — still behaving fully rationally — begin ignoring their own information and

following the crowd.

We now turn to some of the general conclusions from these cascade models, relating

them to more qualitative principles that have been observed about information cascades in

different settings.

16.7 Lessons from Cascades

At the end of Section 16.2, we made some observations about the simple herding experiment

that are reinforced by the general model we’ve just analyzed.

(i) Cascades can be wrong. If, for example, accepting the option is in fact a bad idea

but the first two people happen to get high signals, a cascade of acceptances will start

immediately, even though it is the wrong choice for the population.

(ii) Cascades can be based on very little information. Since people ignore their private

information once a cascade starts, only the pre-cascade information influences the

behavior of the population. This means that if a cascade starts relatively quickly in a

large population, most of the private information that is collectively available to the

population (in the form of private signals to individuals) is not being used.

(iii) Cascades are fragile. The previous point, that cascades can be based on relatively

little information, makes them easy to start; but it can also make them easy to stop.

One manifestation of this is that people who receive slightly superior information can

overturn even long-lived cascades.

Suppose, for example, that a cascade of acceptances is underway in our model; this

means that the number of high signals exceeded the number of low signals by two at

the time the cascade began. Now suppose someone making a decision in the midst

of this cascade happens to receive two private signals. If they are both low signals,

then this person (taking into account the earlier signals he can infer) has now seen an

equal number of high and low signals. Since he is indifferent, our assumption is that

he will reject (since his own signal(s) were low), despite the long run of acceptances

that preceded him. A single public signal can have the same effect: if, in the midst of
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a cascade, there is a public signal that everyone sees, then the next person to decide

in effect receives two signals (the public one and her own private one), with similar

consequences.

More generally, perhaps the main lesson to be learned from studying cascades is to be

careful in drawing conclusions about the best course of action from the behavior of a crowd.

As we have just seen, the crowd can be wrong even if everyone is rational and everyone takes

the same action.

This forms an interesting contrast with an argument made by popular general-audience

books such as James Surowiecki’s The Wisdom of Crowds [378], that the aggregate behavior

of many people with limited information can sometimes produce very accurate results. In his

opening example, Surowiecki notes that if many people are guessing independently, then the

average of their guesses is often a surprisingly good estimate of whatever they are guessing

about (perhaps the number of jelly beans in a jar, or the weight of a bull at a fair). The

key to this argument of course is that the individuals each have private information (their

signals), and they guess independently, without knowing what the others have guessed. If

instead they guess sequentially, and can observe the earlier guesses of others, then we are

back in the cascade setting and there would be no reason to expect the average guess to be

good at all. Surowiecki also notes this possibility of cascades as a caution in following the

crowd.

These observations suggest how the possibility of cascades can affect the behavior of

individuals or groups in a range of different situations. One setting that is susceptible to

cascades is the style of group decision-making in which a committee of people sit around a

table and discuss potential solutions to a problem. For example, consider a hiring committee

that needs to decide whether to make a job offer to candidate A or candidate B. In these

kinds of situations, a common strategy is to go around the table, asking people in sequence

to express their support for option A or option B. But if the participants assume that they

all have roughly equal insight into the problem, then a cascade can quickly develop: if a few

people initially favor A, others may be led to conclude that they should favor A, even if they

initially preferred B on their own. The cascade principles we’ve seen in this chapter suggest

that this may not just be an issue of social pressure to conform to the majority, but in fact a

rational approach to decision-making, in which you assume that the people speaking before

you have information about the problem that is comparable in quality to your own.

Such considerations suggest an inherent tension between getting a group of experts to

work together and build on each other’s ideas, on the one hand, and giving them the oppor-

tunity to form their own opinions, on the other. This in turn suggests strategies for balancing

this tension, potentially by forcing experts to reach partial decisions independently before

entering a phase of collaboration and consensus. It also suggests that if certain people are

known to have particularly good information about a problem, it can matter whether they
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weigh in earlier in the process or later.

Marketers also use the idea of cascades to attempt to get a buying cascade started for

a new product. If they can induce an initial set of people to adopt the new product, then

those who make purchasing decisions later on may also adopt the product even it is no

better than, or perhaps even worse than, competing products. This is most effective if these

later consumers are able to observe the adoption decisions, but not how satisfied the early

customers actually were with they choice — this is consistent with the idea that cascades

arise naturally when people can see what others do but not what they know. If the payoffs

(or statistics based on the payoffs) from earlier consumers are available, this can help prevent

a cascade of bad choices.

16.8 Exercises

1. In this problem we will ask whether an information cascade can occur if each individual

sees only the action of his immediate neighbor rather than the actions of all those who

have chosen previously. Let’s keep the same setup as in the Information Cascades

chapter, except than when individual i chooses he observes only his own signal and the

action of individual i− 1.

(a) Briefly explain why the decision problems faced by individuals 1 and 2 are un-

changed by this modification to the information network.

(b) Individual 3 observes the action of individual 2, but not the action of individual

1. What can 3 infer about 2’s signal from 2’s action?

(c) Can 3 infer anything about 1’s signal from 2’s action? Explain.

(d) What should 3 do if he observes a high signal and he knows that 2 Accepted?

What if 3’s signal was low and 2 Accepted?

(e) Do you think that a cascade can form in this world? Explain why or why not. A

formal proof is not necessary, a brief argument is sufficient.

2. In this question we consider a variation on the model of information cascades from

Chapter 16. Suppose that there is a new technology which individuals sequentially

decide to adopt or reject. Let’s suppose that anyone who adopts the new technology

receives either a positive or a negative payoff from using the new technology. Unlike

the model used in Chapter 16, these payoffs are random and have the property that

the average payoff is positive if the technology is Good, and negative if the technology

is Bad. Anyone who decides to reject the new technology always receives a payoff of

exactly zero.
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As in the model used in Chapter 16, each person receives a private signal about the

technology and observes the actions of all those who chose previously. However, unlike

the model used in Chapter 16, each person is also told the payoffs received by each of

those who moved previously. [One interpretation of this is that a government agency

collects information about individuals’ experiences and distributes it for free as a public

service.]

(a) Suppose that the new technology is actually Bad. How does this new information

about payoffs (the payoffs received by each of those who moved previously) affect the

potential for an information cascade of choices to adopt the new technology to form

and persist? [You do not need to write a proof. A brief argument is sufficient.]

(b) Suppose that the new technology is actually Good. Can an information cascade

of rejections of the new technology occur? Explain briefly.

3. In this problem we will consider the information cascades model from Chapter 16 with

specific values for the probabilities. Let’s suppose that the probability that Accept is

a good idea is p = 1/2; and the probability of a High signal if Good is true (as well as

the probability of a Low signal if Bad is true) is q = 3/4. Finally, let’s assume that

Good is actually true.

(a) What is the probability that the first person to decide will chose Accept; what’s

the probability that this person will chose Reject?

(b) What is the probability of observing each of the four possible pairs of choices by

the first two people: (A,A), (A,R), (R,A), and (R,R)? [A pair of choices such as (A,R)

means that the first person chose Accept and second person chose Reject.]

(c) What is the probability of an Accept or a Reject cascade emerging with the decision

by the third person to chose? Explain why a cascade emerges with this probability.

4. Let’s consider the model of information cascades. Assume that the probability that the

state is Good (G) is p = 1/2, and that the probability of a High signal given a Good

state is q = 2/3. (The probability of a Low signal given a Bad state is also q = 2/3.)

Remember that each person observes a signal and the choices (but not the signals) of

all those who chose before him. Each person chooses between Accept (A) and Reject

(R).

Suppose that you are the tenth person to make a choice and you have observed that

everyone before you chose R. That is, we are in an R-cascade.

(a) What is the probability that this is an incorrect cascade? [The probability that

the state is actually G given that we are in this R-cascade.]
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(b) Now let’s suppose that before you (person 10) receive your signal, you decide to

ask person 9 about the signal that they observed. Let’s suppose that person 9 observed

a High signal, that person 9 tells you that his signal was High, and that you know that

person 9 is telling the truth. After this, you receive your own signal. What decision

should you make, A or R, and how does it depend on which signal you receive?

(c) Now let’s consider person 11. Person 11 observes only his own signal and the choices

of those who decided before him (1 to 10). Person 11 knows that you have observed

both your signal and person 9’s signal. Person 11 cannot observe these signals; all

he knows is the choices that have been made. The first nine people have chosen R.

What should person 11 do if you choose R? What should he do if you choose A? Why?

Remember that person 11 observes a signal, and so his choice can depend on his signal

as well as the earlier choices.

5. Suppose you’re working at a company, and your boss asks you to explain what went

wrong in a recent hiring decision. The company decided to interview two candidates

for a single job. Let’s call the two candidates A and B. A hiring committee was formed

to attend the interviews and decide which of the two candidates to hire. Everyone on

the committee was interested in making the best possible hire, but after the interview

it was clear that members of the committee had different ideas about which of the two

candidates was the best choice. When the committee met to make the final decision

they decided to go around the room and ask each person on the committee to announce

which of the two candidates they believed to be the best choice for the company. In

fact, everyone on the committee said that candidate A seemed to be the best choice,

so the offer was made immediately to candidate A without additional discussion.

Now that candidate A has worked for the firm for a while it is clear that candidate B

would have been a better choice.

(a) Your boss has asked you to explain how the committee members could have

unanimously supported candidate A when she was reasonably certain that before

the committee meeting at least some of the members of the committee thought

that B was probably the best choice. What can you tell her?

(b) Can you suggest another procedure that the committee could have used that would

have revealed the initially differing opinions about the candidates and which might

have resulted in the actually better choice of candidate B?

6. You have to make a choice between two alternatives. These alternatives might be,

for example, whether to believe a rumor or not, which of two competing products to

purchase, which of two competing political candidates to vote for, or which of two



516 CHAPTER 16. INFORMATION CASCADES

possible technologies to adopt for the new firm that you have just started. Unfortu-

nately, you do not know much about the potential benefits of choosing either of the

alternatives. We will represent this formally by saying that you believe that each of

the alternatives is equally likely to be the best choice. However, there are experts who

do have information about the benefit (to you) from each of the alternatives. Experts

are not perfect; they just know more than you do. We will represent this formally by

saying that each expert has some imperfect, private information about the benefit of

each alternative and we will assume that all experts are equally good in evaluating the

two alternatives.

The experts have made public recommendations about which of the alternatives is

best. (The experts cannot convey their information directly. Its just too complex and

if they tried you would not know what to do with their statements anyhow.) Experts

make recommendations sequentially and each expert knows what all of those who have

announced their recommendation earlier have chosen. (This is a bit extreme, but the

opposite case in which they simultaneously chose is even more extreme.) You see the

recommendations of all of the experts, but you do not know the order in which they

made those recommendations. Finally, we will assume that experts are honest; that is,

they always make the recommendation that they believe is best (for you) given their

private information and any inferences that they can draw from the recommendations

of other experts.

(a) Suppose that the majority of the experts recommend alternative A. How confident

should you be that A is in fact the best choice? Should you be more confident that A

is the best choice if the fraction of experts who recommend A is even larger, i.e. not

just more than one-half, but close to one? Explain. [You can’t provide a numerical

answer to this question. Just discuss the inference that you can make from seeing

recommendations.]

(b) Suppose now that experts do not make public recommendations. Instead, you have

to hire an expert in order to obtain their recommendation. Let’s also suppose that

experts don’t talk to each other before you hire them; instead they privately obtain

information and update their opinion about the alternatives. You know experts are not

perfect so you plan to hire five of them in the hope that having more opinions is better.

Consider two procedures for how to organize the process of obtaining the experts’

recommendations. In procedure I, bring all of the experts together in a room and ask

them to announce their recommendations sequentially. In procedure II, privately ask

each expert to announce their recommendation. Which procedure will provide you

with the most information? Why?


