Problem set # 5

1. Find the autocorrelation function of the following processes.
 (a) \(X_t = \alpha X_{t-1} + \varepsilon_t \) where \(|\rho| < 1 \) and \(\varepsilon_t \sim i.i.d. \ (0, \sigma^2_{\varepsilon}) \)
 (b) \(Y_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} \) where \(\varepsilon_t \sim i.i.d. \ (0, \sigma^2_{\varepsilon}) \)
 (c) \(Z_t = \rho Z_{t-1} + \varepsilon_t + \theta \varepsilon_{t-1} \) where \(|\rho| < 1 \) and \(\varepsilon_t \sim i.i.d. \ (0, \sigma^2_{\varepsilon}) \)

2. Suppose that we have the following regression model;
 \[Y_t = \beta_1 + \beta_2 X_t + \beta_3 Y_{t-1} + u_t \]
 where \(X_t \) is non-stochastic. Further, we have the following error structure;
 \[u_t = \rho u_{t-1} + \varepsilon_t \]
 where \(|\rho| < 1 \) and \(\varepsilon_t \sim i.i.d. \ (0, \sigma^2_{\varepsilon}) \).
 (a) Prove that \(\text{plim} \hat{\beta}_3 \neq \beta_3 \)
 where \(\hat{\beta}_3 \) is the OLS estimator of \(\beta_3 \).
 (b) How can you obtain a consistent estimator for \(\beta_3 \)?

3. Consider estimation of \(\sigma^2 \) in the generalized linear regression model. There is a fundamental ambiguity in regard to this parameter as it is merely a scaling of \(E(\varepsilon \varepsilon') = \sigma^2 \Omega \). Since both components are unknown, \(\sigma^2 \) cannot be estimable until some scaling of \(\Omega \) is assumed to remove the indeterminacy. The most convenient assumption is that \(\text{tr} (\Omega) = N \)
 The classical regression model in which \(\Omega = I \) is one such case, so this provides a useful benchmark. Now, consider the estimator \(s^2 = e'e / (N - k) \), where \(e \) is the vector of the OLS residuals.
 (a) Prove that
 \[
 E(s^2) = \frac{N \sigma^2}{(N - k)} - \frac{\sigma^2 \text{tr} \left[\left(\frac{X' X}{N - k} \right)^{-1} \left(\frac{X' \Omega X}{N - k} \right) \right]}{(N - k)}
 \]
(b) Prove that if
\[\text{plim} \frac{X'X}{N} = Q \] where Q is positive definite
\[\text{plim} \frac{X'\varepsilon}{N} = 0 \]
\[\text{plim} \frac{X'\Omega X}{N} = L \] where L is positive definite

then,
\[\lim_{N \to \infty} E(s^2) = \sigma^2 \]

(c) To consider the issue of consistency, prove that
\[\text{plims}^2 = \text{plim} \left(\frac{1}{N-k} \sum_{i=1}^{N} \varepsilon_i^2 \right) \]

Under what conditions is plims$^2 = \sigma^2$?

4. What are the cases in which the seemingly unrelated regression estimator (SURE) is equivalent to the OLS estimator? Prove your claim.

5. a) Expand the rational lag model:
\[y_t = \frac{0.6+2L}{1-0.6L+0.3L^2} x_t + \varepsilon_t \]

What are the coefficients on $x_{t-1}, x_{t-2}, x_{t-3}$ and x_{t-4}?

b) Suppose that the model in part a) were specified as
\[y_t = \alpha + \frac{\beta+\gamma L}{1-\delta L-\eta L^2} x_t + \varepsilon_t \]

How can the parameters be estimated? Is OLS consistent?