Midterm

You may use books, notes, calculators intuition and math, but not collusion. Good luck!

1. (Warmup) You wish to fit the model \(y = X\beta + \varepsilon \), but you do not have the full data set \([y \ X] = Z\). Instead you have only \(Z'Z \)

\[
Z'Z = \begin{bmatrix} 100 & 10 & 25 \\ 10 & 20 & 0 \\ 25 & 0 & 75 \end{bmatrix}
\]

Calculate \(\hat{\beta} \), \(\sigma^2 \) and \(R^2 \). Is there anything to be gained by seeing the full dataset?

2. You are interested in fitting the regression model

\[y_i = x_i'\beta + \varepsilon_i \]

with \(x_i' = (1 \times 2) = (1 \ 1) \) in \(N/2 \) observations (Group 1) \(x_i' = (1 - 1) \) in the other \(N/2 \) observations (Group 2). Although ols will work you design an alternative estimator \(\hat{\beta} \) by noting that

\[
\bar{y}(1) = \beta_1 + \beta_2 + \bar{\varepsilon}(1)
\]

\[
\bar{y}(2) = \beta_1 - \beta_2 + \bar{\varepsilon}(2)
\]

where \(\bar{y}(j) \) is the sample mean of the \(y_i \) in group \(j \), etc. Since \(\bar{\varepsilon}(j) \), has expectation zero, you solve the 2 linear equations * with the \(\varepsilon \) set to zero to obtain \(\hat{\beta} \). Give a formula for \(\hat{\beta} \). Is \(\hat{\beta} \) unbiased? What is its sampling variance? (Assume \(\varepsilon_i \) are independent, mean zero, variance \(\sigma^2 \)). Is \(\hat{\beta} \) consistent? What is the variance of the ols estimator? Explain.

OVER PLEASE
3. In another simple regression

\[y_t = \alpha + x_t \beta + \epsilon_t \]

with \(x_t \) scalar, you do not observe \(x_t \) but rather only a badly measured version \(z_t = x_t + \nu_t \) (a "proxy"). So you regress \(y_t \) on \(z_t \) and obtain a slope parameter \(\tilde{\beta} \). Assume that \(\nu_t \) is independent of \(x_t \) and \(\epsilon_t \). Show that

\[\text{plim } \tilde{\beta} < \beta. \]

Explain (briefly).

Now you observe \(w_t \), which is correlated with \(x_t \) but not \(\nu_t \) or \(\epsilon_t \). You multiply through and regress \(w_t y_t \) on \(w_t \) and \(w_t z_t \). Find the plim of the coefficient of \(w_t z_t \). Explain.