LECTURE 8: ASYMPTOTICS I

We are interested in the properties of estimators as $n \to \infty$. (why?)

Consider a sequence of random variables $\{X_n, n \geq 1\}$. (You might want to think of the sequence $\{X_n\}$ as a sequence of random variables indexed by the sample size n.)

Definition: (Weak convergence) A sequence of random variables $\{X_n, n \geq 1\}$ is said to converge weakly to a constant c if

$$\lim_{n \to \infty} P(|X_n - c| > \varepsilon) = 0$$

for every given $\varepsilon > 0$. This is written $\text{plim } X_n = c$ or $X_n \Rightarrow C$ and is also called convergence in probability.

Definition: (Strong convergence) A sequence of random variables $\{X_n, n \geq 1\}$ is said to converge strongly to a constant c if

$$P(\lim_{n \to \infty} X_n = c) = 1.$$

Strong convergence is also called almost sure convergence or convergence with probability one and is written $X_n \to C \text{ w.p.1}$ or $X_n \Rightarrow C$.

Proposition: Strong convergence implies weak convergence.

Discussion?

LAWS OF LARGE NUMBERS:

Let $\{X_n, n \geq 1\}$ be observations and suppose we look at the sequence $\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$. The question we will be dealing with is "when does $\overline{X}_n \to \xi$ where ξ is some parameter?". As we will see shortly, the weak law of large numbers is concerned with convergence of \overline{X}_n to ξ in probability, and the strong law of large numbers is concerned with convergence of \overline{X}_n to ξ almost
surely.
Weak Law of Large Numbers: (WLLN) Let $E(X_i) = \mu$, $V(X_i) = \sigma^2$, $\text{cov}(X_i, X_j) = 0$. Then $\bar{X}_n - \mu \to 0$ in probability (i.e. $\text{plim } \bar{X}_n = \mu$).

Proof: Recall **Chebyshev's inequality:**

$$P(\{|X - \mu| \geq k\} \leq \sigma^2 / k^2 \text{ where } E(X) = \mu \text{ and } V(X) = \sigma^2. \]

Since we are interested in \bar{X}_n, note that $E(\bar{X}_n) = \mu$ and $V(\bar{X}_n) = \sigma^2/n$. Consequently, $\lim_{n \to \infty} P(\{|\bar{X}_n - \mu| > \varepsilon\} = \lim_{n \to \infty} \sigma^2 / n\varepsilon^2 = 0. \]

Notes:

1. $E(X_i) = \mu_i$ is O.K.. In this case, we consider $\bar{X}_n - \mu_n$ with $\mu_n = n^{-1} \sum \mu_i$.
2. $V(X_i) = \sigma_i^2$ is O.K.. As long as $\lim \sum \sigma_i^2 / n^2 = 0$, our proof applies.
3. Existence of σ^2 can be dropped if we assume independent and identically distributed observations. In this case, the proof is different.

Strong Law of Large Numbers: (SLLN) X_i are independent with $E(X_i) = \mu_i$, $V(X_i) = \sigma_i^2$ and $\sum \sigma_i^2 / i^2 < \infty$. Then $\bar{X}_n - \mu_n \to 0$ almost surely (a.s.).

No proofs

Note: Again, we can drop assumption on the existence of σ_i^2 if we assume independent and identically distributed observations.

Some properties of plim:

1. $\text{plim } XY = \text{plim } X \text{ plim } Y$
2. $\text{plim } (X+Y) = \text{plim } X + \text{plim } Y$
3. **Slutsky's theorem:** If the function g is continuous at $\text{plim } X$, then $\text{plim } g(X) = g(\text{plim } X)$.

3
CENTRAL LIMIT THEOREM: *(Asymptotic Normality)*

Definition: The moment generating function is defined as

\[
m(t) = \mathbb{E}(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} f(x) \, dx.
\]

The name comes from the fact that \(\frac{d'}{dt'} m(t') = \int_{-\infty}^{\infty} x' e^{tx} f(x) \, dx = \mathbb{E}(X') \) when evaluated at \(t = 0 \).

Note the following series expansion:

\[
m(t) = \mathbb{E}(e^{tX}) = \mathbb{E}(1 + Xt + \frac{1}{2!}(Xt)^2 + \ldots) = 1 + \alpha_1 t + \frac{1}{2!} \alpha_2 t^2 + \ldots
\]

where \(\alpha_i = \mathbb{E}(X^i) \) (For example: \(\alpha_1 = \mu_1, \alpha_2 = \mu^2 + \sigma^2 \)).

Property 1: The moment generating function of \(\sum_{i=1}^{n} X_i \) when \(X_i \) are independent is the product of the moment generating functions of \(X_i \). *(Exercise: Prove this.)*

Property 2: Let \(X \) and \(Y \) be random variables with continuous densities \(f(x) \) and \(g(y) \). If the moment generating function of \(X \) is equal to that of \(Y \) in an interval \(-h < t < h\), then \(f = g \).

Example: The moment generating function for \(X \sim q(0, 1) \)

\[
m(t) = \mathbb{E}(e^{tX}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \, dx
\]

\[
= e^{t^2/2} \left(\frac{1}{\sqrt{2\pi}} \right) \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-t)^2} \, dx = ?
\]
Uses of Asymptotic Distributions:

Suppose \(X_n - \mu \to 0 \) in probability. (What can be said about the distribution of \(X_n - \mu \)?)

In order to get distribution theory, we need to norm the random variable; we usually look at \(n^{1/2}(X_n - \mu) \).

Note that the random variable sequence \(\{n^{1/2}(X_n - \mu), n \geq 1\} \) does not converge in probability. (why not?)

We might be able to make probability statements like

\[
\lim_{n \to \infty} P\left(n^{1/2}(X_n - \mu) < z\right) = F(z)
\]

for some distribution \(F \).

Then we could use \(F \) as an approximate distribution for \(n^{1/2}(X_n - \mu) \). This, of course, implies an approximate distribution for \(X_n \) on making a simple change of variables.

Now we can make the following definition for any random variable sequence:

Definition: (Convergence in distribution) A sequence of random variables \(\{Z_n, n \geq 1\} \) with distribution functions \(\{F_n(z) = P(Z_n \leq z), n \geq 1\} \) is said to converge in distribution to a random variable \(Z \) with distribution function \(F(z) \) if and only if \(\lim_{n \to \infty} F_n(z) = F(z) \) at all points of continuity of \(F(z) \).

Notation: \(Z_n \overset{D}{\to} Z \).

It is a little easier to work with \(Y_n = (n^{1/2}(X_n - \mu))/\sigma \) where \(E(X_i) = \mu \), \(V(X_i) = \sigma^2 \) and the random variables \(\{X_i\} \) are independent and identically distributed.

Central Limit Theorem: (CLT) (Lindberg-Levy) The distribution of \(Y_n \) (as defined above) as \(n \to \infty \) is
\[\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx \] (standard normal).

Proof: Let \(m_{X_i-\mu}(t) \) be the moment generating function of \((X_i - \mu)\). That is,

\[m_{X_i-\mu}(t) = 1 + \frac{\sigma^2 t^2}{2} + o(t^2) \]

where \(o(t^2) \) is the remainder term such that \(o(t^2)/t^2 \to 0 \) as \(t \to 0 \).

We know that

\[Y_n = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = \frac{\sum_{i=1}^{n} (X_i - \mu)}{\sigma \sqrt{n}}. \]

The moment generating function of \(Y_n \) is

\[m_{Y_n}(t) = \left[m_{X_i-\mu}\left(\frac{t}{\sigma \sqrt{n}}\right)\right]^n = \left[1 + \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right]^n \]

by the property of moment generating functions noted before.

\[\Rightarrow \ln m_{Y_n}(t) = n \ln \left[1 + \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right] = n \ln \left[1 + \frac{t^2}{2n}\right] \]

Note that \(\ln (1+x) \approx x \) when \(x \) is small.

\[\Rightarrow \ln m_{Y_n}(t) \approx n(t^2/2n) \]

\[\Rightarrow \text{As } n \to \infty, \ m_{Y_n}(t) \to e^{t^2/2} \] which is the moment generating function of a standard normal random variable. ■
Note that the convergence concept associated with the Central Limit Theorem is convergence in
distribution.

Point of the Central Limit Theorem: The distribution function of X_n for large n can be
approximated by that of a normal with mean μ and variance σ^2/n.

Qualification: We really should use characteristic function $C(t) = Ee^{itX}$ in the proof. The reason
is that $C(t)$ always exists while $m(t)$ does not (some econometric estimators have no moments in
finite samples, but nevertheless have asymptotically a normal distribution).

Notes:
1. Identical means and variances can be dropped straightforwardly. This will be important in
econometric applications. We need some restrictions on the variance sequence though. In this
case, we work with
 \[
 Y_n = \frac{\sum_{i=1}^{n}(X_i - \mu_i)}{\left(\sum_{i=1}^{n}\sigma_i^2\right)^{1/2}}.
 \]
2. Versions of the Central Limit Theorem with random vectors are also available.
3. The basic requirements is that each term in the sum should make a negligible contribution.

Examples:
1. Estimation of mean μ from a sample of normal random variables: In this case, we estimate μ
 by \bar{X}, and the asymptotic approximation for the distribution of \bar{X} or ($\bar{X} - \mu$) is exact.
2. Consider $n^{1/2}(\hat{\beta} - \beta)$ where $\hat{\beta}$ is the LS estimator.
 \[
 n^{1/2}(\hat{\beta} - \beta) = n^{1/2}(X'X)^{-1}X'\varepsilon = [X'X / n]^{-1} n^{1/2}[X'\varepsilon / n]
 \]
 $[X'X / n]$ is the sample second moment matrix of the regressors. It can be shown that the sample
moments will converge in probability to the population moments. Thus we write
plim \[X'X/n\] = Q where Q is a positive definite matrix. This implies that X will always have full column rank. Additionally, none of the regressors will have "too big" or "too small" values.

Let \(X_i\) be the \(i\)th row of matrix X. Then \([X'\varepsilon/n] = \sum X'_i\varepsilon_i/n\), which is the average of \(n\) independent random vectors, \(X'_i\varepsilon_i\), with zero means and variances \(var(X'_i\varepsilon_i) = \sigma^2X'_iX_i\). Note that

\[
var(n^{1/2}[X'\varepsilon]/n) = var(\sum X'_i\varepsilon_i / \sqrt{n}) = \frac{\sigma^2}{n} \sum X'_iX_i = \sigma^2 \left(\frac{XX}{n} \right)
\]

Since plim \([X'X/n] = Q\), \(var(n^{1/2}[X'\varepsilon/n]) = \sigma^2Q\) as \(n \to \infty\).

Under the assumption that regressors are well-behaved (i.e. contribution of any particular observation to \([X'\varepsilon/n]\) is negligible), we can apply a Central Limit Theorem and conclude that
\(n^{1/2}[X'\varepsilon]/n \xrightarrow{D} q(0,\sigma^2Q)\).

It follows then that
\(n^{1/2}(\beta - \beta) = [X'X/n]^{-1}n^{1/2}[X'\varepsilon/n] \xrightarrow{D} q(0,\sigma^2Q^{-1})\).

The basic point is that even if normality is not assumed, the LS estimators will be asymptotically normally distributed under the assumption of well-behaved regressors.

Some properties of convergence in probability (plim) and convergence in distribution:

(Remember the notation for convergence in distribution.)

1. \(X_n\) and \(Y_n\) are random variable sequences. If plim \((X_n - Y_n) = 0\) and \(Y_n \xrightarrow{D} Y\), then \(X_n \xrightarrow{D} Y\) as well.

2. If \(Y_n \xrightarrow{D} Y\) and \(X_n \xrightarrow{D} c\) in probability (i.e. plim \(X_n = c\)), then
 a. \(X_n + Y_n \xrightarrow{D} c + Y\)
 b. \(X_nY_n \xrightarrow{D} cY\)
 c. \(Y_n / X_n \xrightarrow{D} Y / c, c \neq 0\).

3. If \(X_n \xrightarrow{D} X\) and \(g\) is a continuous function, then \(g(X_n) \xrightarrow{D} g(X)\).