LECTURE 16: ESTIMATION OF SIMULTANEOUS EQUATIONS MODELS

Consider \(y_1 = Y_2^\gamma + X_1^\beta + \varepsilon_1 \) which is an equation from a system.

We can rewrite this as \(y_1 = Z\delta + \varepsilon_1 \) where \(Z = [Y_2 \ X_1] \) and \(\delta' = [\gamma \ \beta] \).

Note that \(Y_2 \) is jointly determined with \(y_1 \), so \(\text{plim} (Y_2'\varepsilon_1/N) \neq 0 \) (usually).

IV ESTIMATION:

The point of IV estimation is to find a matrix of instruments \(W \) so that

\[
\text{plim} \quad \frac{W'\varepsilon_1}{N} = 0
\]

and

\[
\text{plim} \quad \frac{W'Z}{N} = Q \quad \text{where Q is nonsingular.}
\]

The IV estimator \(\hat{\delta}_{IV} \) is \((W'Z)^{-1}W'y_1\). As in the lecture on dynamic models, multiplying the model by the transpose of the matrix of instruments yields \(W'y_1 = W'Z\delta + W'\varepsilon_1 \) which gives \(\hat{\delta}_{IV} \).

Asymptotic distribution of \(\hat{\delta}_{IV} \):

Note that \(\hat{\delta}_{IV} - \delta = (W'Z)^{-1}W'\varepsilon_1 \). Assume that

\[
\frac{W'\varepsilon_1}{\sqrt{N}} \rightarrow q \left(0, \sigma^2 \frac{WW}{N} \right).
\]

(Is this a sensible assumption? Recall the CLT.)

Then

\[
\sqrt{N}(\hat{\delta}_{IV} - \delta) \rightarrow q(0, \sigma^2 \Sigma_\delta)
\]
where \(\Sigma_\delta = N(W'Z)^{-1}W'W(W'Z)^{-1} = (1/N) Q^{-1}W'WQ^{-1} \).

The question is what to use for \(W \).

Suppose we use all \(K \) of the exogenous variables in the system, i.e. \(X \).

Multiplying by the transpose of the matrix of instruments gives \(X'y_1 = X'Z\delta + X'\epsilon_1 \). For this system of equations to have a solution, \(X'Z \) has to be square and nonsingular. When is this possible?

Note the following dimensions: \(X \) is \(NxK \), \(X_1 \) is \(NxK_1 \) and \(Y_2 \) is \(Nx(G_1 - 1) \). This, of course, requires \(K = K_1 + G_1 - 1 \).

(Recall the order condition: \(K \geq K_1 + G_1 - 1 \).)

Thus, the above procedure works when the equation is just identified.

The resulting IV estimates are indirect least squares which we saw last time.

Suppose \(K < K_1 + G_1 - 1 \). Then what happens? Consider the supply and demand example. This is the underidentified case.

Suppose \(K > K_1 + G_1 - 1 \). Then \(X'y_1 = X'Z\delta + X'\epsilon_1 \) is \(K \) equations in \(K_1 + G_1 - 1 \) unknowns (setting \(X'\epsilon_1 \) to zero which is its expectation). We could choose \(K_1 + G_1 - 1 \) equations to solve for \(\delta \) - there are many ways to do this, typically leading to different estimates. This is the overidentified case.

Another way to look at this case is as a regression model - with \(K \) "observations" on the dependent variable.

We could apply the LS method, but GLS is more efficient since \(V(X'\epsilon_1) = \sigma^2(X'X) \neq \sigma^2I \).

The observation matrix is \(X'y_1 \) and \(X'Z \). GLS gives the estimator
\[\hat{\delta} = [Z'(X'X)^{-1}X'Z]^{-1}Z'X(X'X)^{-1}X'y_1. \] (Recall that in the model \(y = X\beta + \epsilon \) with \(V(\epsilon) = \Omega \), the GLS estimator is \(\hat{\beta}_G = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y).

In the just-identified case (where \(X'Z \) is invertible),
\[\hat{\delta} = (X'Z)^{-1}X'X(Z'X)^{-1}Z'X(X'X)^{-1}X'y_1 = (X'Z)^{-1}X'y_1 = \hat{\delta}_{iv} \text{ with } W = X. \]

TWO-STAGE LEAST SQUARES:

Return to the overidentified case:
\[\hat{\delta} = [Z'(X'X)^{-1}X'Z]^{-1}Z'X(X'X)^{-1}X'y_1. \]

Proposition: The estimator \(\hat{\delta} = [Z'(X'X)^{-1}X'Z]^{-1}Z'X(X'X)^{-1}X'y_1 \) is the two-stage least squares (2SLS or TSLS) estimator.

Why is \(\hat{\delta} \) called the TSLS estimator?

Let \(\bar{M} = X(X'X)^{-1}X' = I - M \). (What is \(\bar{M} \)?)

Then \(\hat{\delta} = (Z'\bar{M}Z)^{-1}Z'\bar{M}y_1. \)

Recall that \(Z = [Y_2 \ X_1] \). \(Z \) is the matrix of included variables in equation 1. Its dimension is \(N \times (G_1-1+K_1) \). We will write out the expression for \(\hat{\delta} \).

\[
Z'\bar{M}Z = \begin{bmatrix} Y_2'\bar{M}Y_2 & Y_2'\bar{M}X_1 \\ X_1'\bar{M}Y_2 & X_1'\bar{M}X_1 \end{bmatrix}.
\]

Now: \(\bar{M}Y_2 = X(X'X)^{-1}X'Y_2 = \hat{Y}_2 = X\hat{\Pi}_2 \) which is the LS predictor of \(Y_2 \).

Note that \(X_1'\bar{M}X_1 = X_1'X_1. \) (\(R[X_1] \subset R[X] \Rightarrow \bar{M}X_1 = X_1; \bar{M}X = X. \))

Also: \(Y_2'\bar{M}Y_2 = Y_2'\bar{M}\bar{M}Y_2 = \hat{Y}_2'\hat{Y}_2. \)
So,
\[
\hat{\delta} = \begin{bmatrix} \hat{\gamma}_2' & \hat{\gamma}_2'X_1 \\ X_1'\hat{\gamma}_2 & X_1'X_1 \end{bmatrix}^{-1} \begin{bmatrix} \hat{\gamma}_2'y_1 \\ X_1'y_1 \end{bmatrix}. \quad (why?)
\]

\(\hat{\delta}\) is the coefficient vector from a regression of \(y_1\) on \(\hat{Y}_2\) and \(X_1\).

Interpretation as 2SLS? Interpretation as IV?

Proposition: 2SLS is IV estimation with \(W = [\hat{Y}_2 \ X_1]\).

Proof: Note that

\[
W'Z = \begin{bmatrix} \hat{\gamma}_2'Y_2 & \hat{\gamma}_2'X_1 \\ X_1'\hat{\gamma}_2 & X_1'X_1 \end{bmatrix} = \begin{bmatrix} \hat{\gamma}_2'Y_2 & \hat{\gamma}_2'X_1 \\ X_1'\hat{\gamma}_2 & X_1'X_1 \end{bmatrix}.
\]

This is the matrix appearing inverted in \(\hat{\delta}\). ■

Asymptotic distribution of \(\hat{\delta}\):

We know this from IV results.

Note that \(\hat{\delta} = \delta + (Z'MZ)^{-1}Z'M\epsilon_1\). The asymptotic variance of \(N^{1/2}(\hat{\delta} - \delta)\) is the asymptotic variance of \(N^{1/2}(Z'MZ)^{-1}Z'M\epsilon_1 = u\).

\[
\text{Var}(u) = N\sigma^2(Z'MZ)^{-1}Z'M[Z'MZ(Z'MZ)^{-1}] = N\sigma^2(Z'MZ)^{-1}.
\]

Remember to remove the \(N\) in calculating estimated variance for \(\hat{\delta}\). (why?).

Note: \(\text{plim } N(Z'MZ)^{-1}\) exists and finite implies the rank condition. Work this out.

Estimation of \(\sigma^2\):

\[
\hat{\sigma}^2 = (y_1 - Z\hat{\delta})'(y_1 - Z\hat{\delta})/N
\]
Note that $Z = [Y_2 X_1]$ appears in the expressions for $\hat{\sigma}^2$, \textbf{not} $[\hat{Y}_2 X_1]$.

If you regress y_1 on \hat{Y}_2 and X_1, you will get the right coefficients but the wrong standard errors.
GEOMETRY OF 2SLS:

(This takes a little concentration.)

Take $N = 3$ (observations), $K = 2$ (exogenous variables), $K_1 = 1$ (included exogenous variables) and $G_1 = 2$ (included endogenous variables - one is normalized).

How many parameters?

See diagram 16.1

\hat{Y}_2 is in the plane spanned by X_1 and X_2. y_1 is projected to the plane spanned by \hat{Y}_2 and X_1.

Note that X_1 and X_2 and X_1 and \hat{Y}_2 span the same plane. (why?)

Model is just identified (projection of both stages is to the same plane).

What happens if the model is overidentified? (For example, $K_1 = 0$, that is, no included regressors)

What if underidentified? (For example, $K_2 = 2$, that is, no excluded regressors)