LECTURE 8: ASYMPTOTICS I

We are interested in the properties of estimators as

$n \to \infty$.

Consider a sequence of random variables

$\{ X_n, n \geq 1 \}$.
• **Definition: (Weak convergence)** A sequence of random variables \(\{X_n, n \geq 1\} \) is said to converge weakly to a constant \(c \) if

\[
\lim_{n \to \infty} P(|X_n - c| > \varepsilon) = 0
\]

for every given \(\varepsilon > 0 \).

This is written \(\text{plim } X_n = c \) or \(X_n \overset{P}{\to} C \) and is also called convergence in probability.
Definition: (Strong convergence) A sequence of random variables is said to converge strongly to a constant \(c \) if

\[
P(\lim_{n \to \infty} X_n = c) = 1.
\]

or

\[
\lim_{N \to \infty} P(\sup_{n > N} |x_n - c| > \varepsilon) = 0
\]

Strong convergence is also called almost sure convergence or convergence with probability one and is written \(X_n \to C \) w.p.1 or \(X_n \to C \).
LAWS OF LARGE NUMBERS:

Let \(\{X_n, n \geq 1\} \) be observations and suppose we look at the sequence

\[
\bar{X}_n = \sum_{i=1}^{n} X_i / n.
\]

when does \(\bar{X}_n \to \xi \) where \(\xi \) is some parameter?

Weak Law of Large Numbers: (WLLN) Let \(E(X_i) = \mu, V(X_i) = \sigma^2, \) \(\text{cov}(X_iX_j) = 0. \)

Then \(- \mu \to 0\) in probability
Proof: Recall Chebyshev's inequality:

\[P\left(\left| X - \mu \right| \geq k \right) \leq \frac{\sigma^2}{k^2} \]

where \(\mu = E(X) \) and \(\sigma^2 = V(X) \).

Proof of Chebyshev’s inequality

\[\sigma^2 = \int (x - \mu)^2 dF \]

\[= \int_{-\infty}^{\mu-\lambda \sigma} (x - \mu)^2 dF + \int_{\mu-\lambda \sigma}^{\mu+\lambda \sigma} (x - \mu)^2 dF + \int_{\mu+\lambda \sigma}^{\infty} (x - \mu)^2 dF \]

Put in the smallest value of x in the first and last integral, and drop the middle to get:

\[\sigma^2 \geq \lambda^2 \sigma^2 P\left(\left| x - \mu \right| \geq \lambda \sigma \right) \]
Since we are interested in X_N, note that

$$E(X_N) = \mu \text{ and } V(X_N) = \frac{\sigma^2}{n}.$$

Consequently,

$$\lim_{n \to \infty} P\left(\left| \overline{X}_n - \mu \right| > \varepsilon \right) = \lim_{n \to \infty} \frac{\sigma^2}{n \varepsilon^2} = 0.$$
Notes:

1. $E(X_i) = \mu_i$ is O.K. Consider $X_n - \bar{\mu}_n$ with $\bar{\mu}_n = n^{-1} \sum \mu_i$.

2. $V(X_i) = \sigma_i^2$ is O.K.. As long as $\lim \sum \sigma_i^2 / n^2 = 0$, our proof applies.

3. Existence of σ^2 can be dropped if we assume independent and identically distributed observations. (In this case, the proof is different.)

Strong Law of Large Numbers: (SLLN) X_i are independent with $E(X_i) = \mu_i$, $V(X_i) = \sigma_i^2$ and $\sum \sigma_i^2 / i^2 < \infty$. Then $X_n - \bar{\mu}_n \to 0$ almost surely (a.s.).
Note: Again, we can drop assumption on the existence of σ^2_i if we assume independent and identically distributed observations.

Some properties of plim:

1. \(\text{plim } XY = \text{plim } X \text{ plim } Y \)

2. \(\text{plim } (X+Y) = \text{plim } X + \text{plim } Y \)

3. Slutsky's theorem: If the function \(g \) is continuous at \(\text{plim } X \), then \(\text{plim } g(X) = g(\text{plim } X) \).
CENTRAL LIMIT THEOREM:
(Asymptotic Normality)

Definition: The moment generating function is defined as

\[
m(t) = E(e^{tx}) = \int_{-\infty}^{\infty} e^{tx} f(x)dx.
\]

The name comes from the fact that

\[
\frac{d^r m}{dt^r} = \int_{-\infty}^{\infty} x^r e^{tx} f(x)dx = E(X^r)
\]

when evaluated at \(t = 0 \).
Note the following series expansion:

\[m(t) = E(e^{itX}) = E(1 + Xt + \frac{1}{2!}(Xt)^2 + \ldots) \]

\[= 1 + \alpha_1 t + \frac{1}{2} \alpha_2 t^2 + \ldots \]

where \(\alpha_r = EX^r \)
(For example: \(\alpha_1 = \mu_1, \alpha_2 = \mu^2 + \sigma^2 \)).

Property 1: The moment generating function of \(\sum_{i=1}^{n} X_i \) when \(X_i \) are independent is the product of the moment generating functions of \(X_i \). (*Exercise: Prove this.*)

Property 2: Let \(X \) and \(Y \) be random variables with continuous densities \(f(x) \) and \(g(y) \). If the moment generating function of \(X \) is equal to that of \(Y \) in an interval \(-h < t < h\), then \(f = g \).
Example: The moment generating function for $X \sim q(0,1)$

$$m(t) = E(e^{tx}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-\frac{1}{2}x^2} \, dx$$

$$= e^{t^2/2} \left(\frac{1}{\sqrt{2\pi}} \right) \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-t)^2} \, dx = ?$$

Uses of Asymptotic Distributions:

Suppose $\bar{X}_n - \mu \to 0$ in probability. (What can be said about the distribution of $\bar{X}_n - \mu$?)

In order to get distribution theory, we need to norm the random variable; we usually look at $n^{1/2} (\bar{X}_n - \mu)$.

N. M. Kiefer, Cornell University, Economics 620
Note that the random variable sequence {\(n^{1/2}(\bar{X}_n - \mu), n \geq 1\)} does not converge in probability. (why not?)

We might be able to make probability statements like

\[
\lim_{n \to \infty} P(n^{1/2}(\bar{X}_n - \mu) < z) = F(z)
\]

for some distribution \(F\).

Then we could use \(F\) as an approximate distribution for \(n^{1/2}(\bar{X}_n - \mu)\). This, of course, implies an approximate distribution for \(\bar{X}_n\).

It is a little easier to work with

\[
Y_n = n^{1/2}(\bar{X}_n - \mu)/\sigma.
\]
Central Limit Theorem: (CLT) (Lindberg-Levy) The distribution of \(Y_n \) (as defined above) as \(n \to \infty \) is

\[
\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} \, dx
\]

(standard normal)

Proof: Let \(m_{X_i - \mu} (t) \) be the moment generating function of \((X_i - \mu) \). That is,

\[
m_{X_i - \mu} (t) = 1 + \frac{\sigma^2 t^2}{2} + o(t^2)
\]

where \(o(t^2) \) is the remainder term such that \(o(t^2)/ t^2 \to 0 \) as \(t \to 0 \).
We know that

$$Y_n = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = \frac{\sum_{i=1}^{n} (X_i - \mu)}{\sigma \sqrt{n}}.$$

The moment generating function of Y_n is

$$m_{Y_n}(t) = \left[m_{X_i-\mu} \left(\frac{t}{\sigma \sqrt{n}} \right) \right]^n$$

$$= \left[1 + \frac{t^2}{2n} + o \left(\frac{t^2}{n} \right) \right]^n$$

$$\Rightarrow \ln m_{Y_n}(t) = n \ln \left[1 + \frac{t^2}{2n} + o \left(\frac{t^2}{n} \right) \right]$$

$$\approx n \ln \left[1 + \frac{t^2}{2n} \right]$$
⇒ As \(n \to \infty \), \(m_{Y_n}(t) \to e^{t^2/2} \) which is the moment generating function of a standard normal random variable.

Point of the Central Limit Theorem: The distribution function of \(X_n \) for large \(n \) can be approximated by that of a normal with mean \(\mu \) and variance \(\sigma^2/n \).

Qualification: We really should use characteristic function \(C(t) = E e^{itX} \) in the proof.
Notes:
1. Identical means and variances can be dropped straightforwardly. We need some restrictions on the variance sequence though. In this case, we work with
\[Y_n = \frac{\sum_{i=1}^{n} (X_i - \mu_i)}{\left(\sum_{i=1}^{n} \sigma_i^2\right)^{1/2}}. \]

2. Versions of the Central Limit Theorem with random vectors are also available.

3. The basic requirements is that each term in the sum should make a negligible contribution.
Examples:
1. Estimation of mean μ from a sample of normal random variables: In this case, we estimate μ by \bar{X}, and the asymptotic approximation for the distribution of \bar{X} or $(\bar{X} - \mu)$ is exact.

2. Consider $n^{1/2}(\hat{\beta} - \beta)$ where $\hat{\beta}$ is the LS estimator.

$$n^{1/2}(\hat{\beta} - \beta) = n^{1/2} (X'X)^{-1} X' \varepsilon$$
$$= [X'X / n]^{-1} n^{1/2} [X' \varepsilon / n]$$

Where $[X'X / n]$ is the sample second moment matrix of the regressors.
Under the assumption that regressors are well-behaved (i.e. contribution of any particular observation to \([X'\varepsilon/n]\) is negligible), we can apply a Central Limit Theorem and conclude that

\[n^{1/2}(\hat{\beta} - \beta) = [X'X/n]^{-1} n^{1/2} [X'\varepsilon/n] \xrightarrow{D} q(0, \sigma^2 Q^{-1})\].
Definition: (Convergence in distribution)

A sequence of random variables \(\{Z_n, n \geq 1\} \) with distribution functions \(\{F_n(z) = P(Z_n \leq z), n \geq 1\} \) is said to converge in distribution to a random variable \(Z \) with distribution function \(F(z) \) if and only if
\[
\lim_{n \to \infty} F_n(z) = F(z)
\]

at all points of continuity of \(F(z) \).

Notation: \(Z_n \xrightarrow{D} Z \).
Some properties of convergence in probability (plim) and convergence in distribution:

1. X_n and Y_n are random variable sequences. If $\text{plim} (X_n - Y_n) = 0$ and $Y_n \xrightarrow{D} Y$, then $X_n \xrightarrow{D} Y$ as well.

2. If $Y_n \xrightarrow{D} Y$ and $X_n \rightarrow c$ in probability (i.e. $\text{plim} X_n = c$), then

 a. $X_n + Y_n \xrightarrow{D} c + Y$

 b. $X_n Y_n \xrightarrow{D} cY$

 c. $Y_n / X_n \xrightarrow{D} Y / c$, $c \neq 0$.

3. If $X_n \xrightarrow{D} X$ and g is a continuous function, then $g(X_n) \xrightarrow{D} g(X)$.