Economics 620, Lecture 3: Simple Regression II

Nicholas M. Kiefer

Cornell University
\(\hat{\alpha} \) and \(\hat{\beta} \) are the LS estimators

\(\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i \) are the estimated values

The Correlation Coefficient:

\[
 r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}.
\]

\(R^2 = \) (squared) correlation between \(y \) and \(\hat{y} \)

Note: \(\hat{y} \) is a linear function of \(x \).

So \(\text{corr}(y, \hat{y}) = |\text{corr}(y, x)|. \)
Correlation

Proposition: $-1 < r < 1$

$$r^2 = \frac{\left(\sum (x_i - \bar{x})(y_i - \bar{y})\right)^2}{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}.$$

Use Cauchy-Schwartz

$$(\sum x_i y_i)^2 \leq \sum x_i^2 \sum y_i^2$$

$$\Rightarrow r^2 \leq 1 \Rightarrow -1 \leq r \leq 1$$

Proposition: β and r have the same sign.

Proof:

$$\hat{\beta} = \frac{\sum (x_i - \bar{x})y_i}{\sum (x_i - \bar{x})^2} = r \frac{\sqrt{\sum (y_i - \bar{y})^2}}{\sqrt{\sum (x_i - \bar{x})^2}}$$
\[\sum e_i^2 = \sum (y_i - \bar{y})^2 - \hat{\beta}^2 \sum (x_i - \bar{x})^2 \]

SSR = TSS - SS explained by x

Proposition:

\[r^2 = 1 - \frac{SSR}{TSS} = 1 - \frac{\sum e_i^2}{\sum (y_i - \bar{y})^2} \]

Proof:

\[\frac{\sum e_i^2}{\sum (y_i - \bar{y})^2} = 1 - \hat{\beta}^2 \frac{\sum (x_i - \bar{x})^2}{\sum (y_i - \bar{y})^2} = 1 - r^2 \]

\[\Rightarrow r^2 = 1 - \frac{\sum e_i^2}{\sum (y_i - \bar{y})^2} \]
Warning: Zero Correlation does not imply Independence

Variables are completely dependent, correlation is zero. Correlation is a measure of linear dependence.
A complete specification of the model

Conditional distribution of observables

Conditional on regressors \(x \) “exogenous variables” - variables determined outside the model

Conditional on parameters \(P(y|x, \alpha, \beta, \sigma^2) \)

Previously, specified only mean and maybe variance

Incompletely specified = “semiparametric”

Point estimate: MLE – intuition

Details, asy. justification lecture 9.
Assumptions: Normality

\[p(y|x) = N(\alpha + \beta x, \sigma^2) \]

\[= \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{1}{2} \left(\frac{y - \alpha - \beta x}{\sigma} \right)^2 \right) \]

Likelihood Function:

\[L(\alpha, \beta, \sigma^2) = \prod_{i=1}^{n} p(y_i|x_i) \]

\[= (2\pi\sigma^2)^{-n/2} \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 \right) \]

The maximum likelihood (ML) estimators maximize \(L \). The log likelihood function is

\[\ell(\alpha, \beta, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 \]
Proposition: The LS estimators are also the ML estimators. What is the maximum in σ^2?

$$\sigma^2_{ML} = \sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2 / n$$

Why?

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

$$\Rightarrow \sigma^2_{ML} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

Is this a maximum in σ?

$$\frac{\partial^2 \ell}{\partial (\sigma^2)^2} = \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum (y_i - \alpha - \beta x_i)^2 = \frac{-n}{2\sigma^4} < 0$$
These are linear combinations of normal random variables, hence they are \textbf{normal}. The means and variances have already been obtained:

Distribution of s^2 and σ^2_{ML}

\textbf{Fact:} $\sum e^2$ can be written as a sum of squares of $(n - 2)$ independent normal random variables with means zero and variances σ^2.

\textbf{Proposition:} s^2 is unbiased and $Vs^2 = 2\sigma^4/(n - 2)$.

\textbf{Proof:} Note that $(n - 2)s^2/\sigma^2$ is distributed as $\chi^2(n - 2)$.
More Distributions

\[\Rightarrow E\left(\frac{s^2}{\sigma^2}\right)(n - 2) = (n - 2) \Rightarrow E(s^2) = \sigma^2 \]
\[\Rightarrow V\left(\frac{s^2}{\sigma^2}\right)(n - 2) = 2(n - 2) \]
so \[V(s^2) = \frac{2\sigma^4}{(n - 2)} \]

Proposition: \(s^2 \) has higher variance than \(\sigma_{ML}^2 \)

Proof: Note that \(\frac{n\sigma_{ML}^2}{\sigma^2} \) is distributed as

\[\chi^2(n - 2) \]
\[\Rightarrow E\sigma_{ML}^2 = \frac{\sigma^2(n - 2)}{n} \]
\[\Rightarrow V\left(\frac{n\sigma_{ML}^2}{\sigma^2}\right) = 2(n - 2) \Rightarrow V(\sigma_{ML}^2) = \frac{2\sigma^4(n - 2)}{n^2} \]
\[\Rightarrow \frac{V(s^2)}{V(\sigma_{ML}^2)} = \frac{1}{(n - 2)n^2} = \frac{n^2}{(n - 2)^2} > 1 \]
\(\hat{\beta} \sim N(\beta, \sigma^2_{\beta}) \) where \(\sigma^2_{\beta} = \frac{\sum (x_i - \bar{x})^2}{s^2} \Rightarrow \frac{\hat{\beta} - \beta}{\sigma_{\beta}} \sim n(0, 1) \)

Definition: A 95% confidence interval for \(\hat{\beta} \) is given by \((\hat{\beta} \pm z^*_{0.025} \sigma_{\beta}) \) where \(z \) is standard normal.

Problem: The variance is unknown.

Fact: If \(z \sim n(0, 1) \) and \(\nu \sim \chi^2(k) \) and they are independent, then \(t = \frac{z}{\sqrt{\nu/k}} \) is distributed as \(t(k) \).

Proposition:
\[
\frac{\hat{\beta} - \beta}{s/\sqrt{\sum (x_i - \bar{x})^2}} \sim t(n - 2)
\]
Proof:

\[
\frac{(\hat{\beta} - \beta) \sqrt{\sum (x_i - \bar{x})^2}}{\sigma} \sim n(0, 1)
\]

\[
\frac{s^2}{\sigma^2} (n - 2) \sim \chi^2(n - 2)
\]

\[
\frac{(\hat{\beta} - \beta) \sqrt{\sum (x_i - \bar{x})^2}}{s/\sigma} = \frac{(\hat{\beta} - \beta)}{s/\sqrt{\sum (x_i - \bar{x})^2}} \sim t(n - 2)
\]

Independence?

\[
E(\hat{\beta} - \beta) e_j = E[(\hat{\beta} - \beta)(e_j - \bar{e})]
\]

\[
= E[(\hat{\beta} - \beta)((\alpha - \hat{\alpha}) + (\beta - \hat{\beta})x_j + \varepsilon_j - (\alpha - \hat{\alpha}) - (\beta - \hat{\beta})\bar{x} - \bar{e})]
\]

\[
= E[(\hat{\beta} - \beta)(-\hat{\beta}(x_j - \bar{x}) + (\varepsilon_j - \bar{e}))]
\]

\[
= -(x_j - \bar{x})E[(\hat{\beta} - \beta)^2]
\]

\[
+ E[\varepsilon_j - \bar{e})]
\]

\[
= \frac{-\sigma^2(x_j - \bar{x})}{\sum (x_i - \bar{x})^2} + E(\varepsilon_j - \bar{e}) \frac{\sum(x_i - \bar{x})\varepsilon_i}{\sum (x_i - \bar{x})^2}
\]
Continuation of independence argument

\[E \left(\bar{e}_j \right) \frac{\sum (x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2} = \frac{\sigma^2 (x_j - \bar{x})}{\sum (x_i - \bar{x})^2} - E \frac{\bar{e} \sum (x_i - \bar{x})}{\sum (x_i - \bar{x})^2}. \]

\[E \frac{\bar{e} \sum (x_i - \bar{x})}{\sum (x_i - \bar{x})^2} = 0. \]

Thus,

\[E (\hat{\beta} - \beta) e_j = 0. \]
Violations of Assumptions

I. $Ey_i = \alpha + x_i\beta$

II. $V(y_i|x_i) = V(\varepsilon_i) = \sigma^2$

The alternative is σ_i^2 different across observations (heteroskedasticity). Is the LS estimator unbiased? Is it BLUE?

If the σ_i are known we can run the ‘transformed’ regression, and will get best linear unbiased estimates and correct standard errors.

$w_i = 1/\sigma_i$, let $w_iy_i = \alpha w_i + \beta x_i w_i + \varepsilon_i w_i$.

$Ew_iy_i = \alpha w_i + \beta x_i w_i$ and $V(w_iy_i) = V(\varepsilon_i w_i) = 1$

The Gauss-Markov Theorem tells that LS is BLUE in the transformed model.
The LS estimator in the transformed model is
\[\hat{\beta}_w = \frac{\sum (x_iw - \bar{x}w)w_iy_i}{\sum (x_iw - \bar{x}w)^2} \neq \hat{\beta} \]
with
\[V(\hat{\beta}) = \frac{\sum (x_i - \bar{x})^2 \sigma_i^2}{\left(\sum (x_i - \bar{x})^2 \right)^2} \]

Note: The variance of \(\beta_w \) is less than the variance of \(\hat{\beta} \).

"Heteroskedasticity Consistent" standard errors:
\[V(\hat{\beta}) = E \left[\frac{\sum (x_i - \bar{x}) \varepsilon_i}{\sum (x_i - \bar{x})^2} \right]^2 = E \left[\frac{\sum (x_i - \bar{x})^2 \varepsilon_i^2}{\left(\sum (x_i - \bar{x})^2 \right)^2} \right] \]
insert e for \(\varepsilon \) and remove the expectation.
Essentially this works because $\sum \hat{e}_i^2/n$ is a reasonable estimator for $\sum \sigma_i^2/n$, although of course, \hat{e}_i^2 is not a good estimator for σ_i^2.

Testing for heteroskedasticity:
Split the sample; regress e^2 on stuff

III. $E\varepsilon_i\varepsilon_j = 0$

The alternative is $E\varepsilon_i\varepsilon_j \neq 0$

Is the LS estimator unbiased? Is it BLUE?

Testing for correlated errors:
We need a hypothesis about the correlation.
More (last) on violations of assumptions

IV. Normality

$E(y_i|x_i) = \alpha + \beta x_i$; $V(y_i|x_i) = \sigma^2$ but $\varepsilon_i \sim f(\varepsilon) \neq N(0, \sigma^2)$

The usual suspect is a heavy-tailed distribution. Is the LS estimator unbiased? Is it BLUE?

Example:

$f(\varepsilon) = \frac{1}{2\phi} \exp(-|\varepsilon/\phi|)$

The variance of the ML estimator is half that of the LS estimator asymptotically. The minimum absolute deviation (MAD) estimator works. It is a robust estimator.