Consider $y = X\beta + u$ where y is $T \times 1$, X is $T \times K$, β is $K \times 1$ and u is $T \times 1$.

We are using T and not N for sample size to emphasize that this is a time series.

The natural order of observations in a time series suggest possible approaches to parametrizing the covariance matrix parsimoniously.

First order autoregression: AR(1)

This is the case where $u_t = \rho u_{t-1} + \varepsilon_t$ where ε_t are independent and identically distributed with

$E\varepsilon_t = 0$ and $V(\varepsilon_t) = \sigma^2$.
First order moving average: $MA(1)$

This is the case where $u_t = \varepsilon_t - \theta \varepsilon_{t-1}$.

Random walk: $(AR(1) \text{ with } \ p = 1)$

This is the case where $u_t - u_{t-1} = \varepsilon_t$.

Integrated moving average: $IMA(1)$

This is the case where $u_t - u_{t-1} = \varepsilon_t - \theta \varepsilon_{t-1}$.

Autoregressive moving average (1,1): $ARMA(1, 1)$

$u_t - \rho u_{t-1} = \varepsilon_t - \theta \varepsilon_{t-1}$
Autoregressive of order \(p \): \(AR(p) \)

\[
 u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \ldots + \rho_p u_{t-p} + \varepsilon_t.
\]

Moving average of order \(p \): \(MA(p) \)

\[
 u_t = \varepsilon_t - \sum_{i=1}^{p} \theta_i \varepsilon_{t-i}
\]

Proposition: A first order autoregressive (\(AR(1) \)) process is an infinite order moving average (\(MA(\infty) \)) process.

Proof:

\[
 u_t = \rho(\rho u_{t-2} + \varepsilon_{t-1}) + \varepsilon_t = (\varepsilon_t + \rho \varepsilon_{t-1} + \rho^2 \varepsilon_{t-2} + \ldots).
\]

Thus

\[
 u_t = \sum_{r=0}^{\infty} \rho^r \varepsilon_{t-r}
\]
AR(1) arises frequently in economic time series.

Let \(u_t = \rho u_{t-1} + \varepsilon_t \) which is an AR(1) process.

Note that \(Eu_t = 0 \) and \(V(u_t) = \sigma^2(1 + \rho^2 + \rho^4 + \ldots) = \sigma^2/(1 - \rho^2) \).

Also note that

\[
\text{cov}(u_t, u_{t-1}) = \rho \sigma^2 + \rho^3 \sigma^2 + \rho^5 \sigma^2 + \ldots \\
= \rho \sigma^2/(1 - \rho^2) = \rho V(u_t),
\]

and similarly

\[
\text{cov}(u_t, u_{t-s}) = \rho^s V(u_t) = \rho^s \sigma^2/(1 - \rho^2). \text{ Thus}
\]

\[
Euu' = \frac{\sigma^2}{1 - \rho^2} \begin{bmatrix}
1 & \rho & \rho^2 & \ldots & \rho^{T-1} \\
\rho & 1 & \rho & \ldots & \rho^{T-2} \\
\rho & 1 & \rho & \ldots & \rho^{T-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \ldots & 1
\end{bmatrix}
\]
This is a symmetric matrix.

This is a variance-covariance matrix characterized by two parameters which fits into the GLS framework.

Consider the LS estimator $\hat{\beta}$ under the assumption of an $AR(1)$ process for the u_t's:

1. What are the properties of $\hat{\beta}$?

2. What is the associated variance estimate?

In the LS method, $V(\hat{\beta})$ is estimated by $s^2(X'X)^{-1}$. Is this correct in the AR case?
Under the assumption of an AR(1) error process, $V(\hat{\beta})$ should be

$$(\sigma^2 / 1 - \rho^2))(X'X)^{-1}X'VX(X'X)^{-1}.$$

with V representing the variance-covariance matrix above.

If X variables are trending up and $\rho > 0$ (usually ≈ 0.8 or 0.9), the s^2 will probably underestimate $\sigma^2/(1 - \rho^2)$ and $(X'X)^{-1}X'VX(X'X)^{-1}$.

Point: We can seriously understate standard errors if we ignore autocorrelation.
Consider a simple regression model.
Let \(y_t = \alpha + \beta x_t + \varepsilon_t. \)

Suppose the true process with \(\varepsilon \) and \(\varepsilon \) independent are
\[
y_t = \rho y_{t-1} + \varepsilon_t \text{ and } x_t = \rho^* x_{t-1} + \varepsilon^*_t
\]

The data are really independent AR(1) processes.
Suppose we regress y on x. Then if $T = 20$ and $\rho = \rho^* = 0.9$, then $ER^2 = 0.47$ and $F \approx 18$.

This falsely indicated a significant contribution of x.

Sampling experiments for $y_t = \alpha + \beta x_t + \varepsilon_t$ with $T = 50$ and y, x independent random walks were carried out, and t-statistics on β in 100 trials were calculated.

If these statistics were actually distributed as t, we would expect t to be less than 2, 95 times. We actually observe t to be less than 2, 23 times, and t greater that 2, 77 times. There is spurious significance. The situation only becomes worse with more regressors.

Point: High R^2 does not "balance out" the effects of autocorrelation. Good time-series fits are not to be believed without diagnostic tests.
The important thing is to look at the residuals.

Definition: The Durbin-Watson statistic ("d" or DW") is

\[d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2} = \frac{e'Ae}{e'e} \]

where

\[
A = \begin{pmatrix}
1 & -1 & 0 & \cdots \\
-1 & 2 & -1 & \cdots \\
0 & -1 & 2 & \cdots \\
& & & \ddots & \ddots & \ddots
\end{pmatrix}
\]

Which is a \(T \times T \) symmetric matrix
In other words, d is the sum of squared successive differences divided by sum of squares.

The Durbin-Watson statistic is probably the most commonly used test for autocorrelation, although the Durbin h-statistic is appropriate in wider circumstances and should usually be calculated as well.

Distribution of d:

Note: We want to calculate the distribution under the hypothesis that $\rho = 0$, i.e. no autocorrelation. Then a surprisingly large value indicated autocorrelation.
Intuition:
\[E((\varepsilon_t - \varepsilon_{t-1})^2 = \sigma^2 + \sigma^2 - 2\text{cov}(\varepsilon_t, \varepsilon_{t-1}) = 2\sigma^2 \]

Then, why is \(Ed \neq 2? \)

1. There is one less term in the numerator

2. The use of \(e \) rather than \(\varepsilon \) makes the distribution depend on \(x \).

Note: \(d \) is a ratio of quadric forms in normals.
Why isn't it distributed a \(F? \)
Durbin-Watson test:

Durbin and Watson give bounds d_L and d_U which are both less than 2.

If $d > d_L$, then reject the null hypothesis of no autocorrelation. This indicated positive autocorrelation.

If $d_L < d < d_U$, then the result is ambiguous.

If the statistic d calculated from the sample is greater than 2, the indication is negative autocorrelation. Then use the bounds of d_L and d_U, and check against $4 - d$.

If $4 - d < d_L$, then reject the null.

If $4 - d > d_U$, then do not reject.
Interpretation of the Durbin-Watson test:

1. This is a test for general autocorrelation, not just for AR(1) processes.

2. This test cannot be used when regressors include lagged values of y, for example,

$$y_t = \alpha + \beta_0 y_{t-1} + \beta_1 x_t + \varepsilon_t$$

Other tests are available in this case.
1. **Wallis test**: This is used for quarterly data. The test statistic is
\[
d_4 = \frac{\sum_{t=5}^{T} (e_t - e_{t-4})^2}{\sum_{t=1}^{T} e_t^2}.
\]

2. **Durbin's h test**: This is used when there are lagged \(y\)'s. We regress \(e_t\) on \(e_{t-1}, x_t\) and as many lagged \(y\)'s as are included in the regression. Then test (with "t") the coefficient of \(e_{t-1}\). A significant coefficient on \(e_{t-1}\) indicates presence of autocorrelation. Note that this test is quite easy to do and it "works" when the Durbin-Watson test doesn’t. This is a good test to use.
ESTIMATION WITH AN AR(1) ERROR PROCESS:

Consider $y = X\beta + u$ where $u_t = \rho u_{t-1} + \varepsilon_t$ with $E(u) = 0$ and

$$Euu' = \frac{\sigma^2}{1-\rho^2} \begin{bmatrix} 1 & \rho & \rho^2 & \cdots & \rho^{T-1} \\ \rho & 1 & \rho & \cdots & \rho^{T-2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \cdots & 1 \end{bmatrix} = \frac{\sigma^2}{1-\rho} \Omega.$$
Thus

\[
\Omega^{-1} = \frac{1}{1-\rho^2} \begin{bmatrix}
1 & -\rho & \ddots & \ddots & 0 \\
-\rho & 1+\rho^2 & \ddots & \ddots & -\rho \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
-\rho & \ddots & 1+\rho^2 & -\rho & \\
0 & \ddots & -\rho & 1
\end{bmatrix} = P'P
\]

which is a "band" matrix.

So,

\[
P = \frac{1}{\sqrt{1-\rho^2}} \begin{bmatrix}
\sqrt{1-\rho^2} & 0 & \ddots & \ddots \\
-\rho & 1 & \ddots & \ddots \\
0 & -\rho & \ddots & \ddots \\
\ddots & \ddots & \ddots & \ddots \\
\ddots & \ddots & -\rho & 1
\end{bmatrix}.
\]
Matrix P will be used to transform the model.

The first transformed observation is

$$\sqrt{1 - \rho^2} y_1 = \sum_{h=1}^{K} \beta_h x_{h,1} \sqrt{1 - \rho^2} + u_1 \sqrt{1 - \rho^2},$$

and all others are

$$y_t - \rho y_{t-1} = \sum_{h=1}^{K} \beta_h (x_{h,t} - \rho x_{h,t-1}) + u_t - \rho u_{t-1}.$$

Note that $x_{h,t}$ denotes the t^{th} observation on the h^{th} explanatory variable.

The GLS transformation puts the model back in standard form as expected.
1. Given ρ, the estimation is by the LS method. We write the sum of squares as $S(\rho)$. Then minimization with respect to ρ is a simple numerical problem.

2. ML can also be reduced to a one-dimensional maximization problem which is straightforward.

3. Early two-step methods which often dropped the first observation are less satisfactory. Never use the Cochrane-Orcutt (CORC) procedure.

4. The extension to higher-order AR or MA processes is straightforward.