2. Three Key Aggregate Markets

2.1 The Labor Market: Productivity, Output and Employment
2.2 The Goods Market: Consumption, Saving and Investment
2.3 The Asset Market: Money and Inflation
2.2 The Goods Market: Consumption, Saving and Investment

- Last chapter: determination of the **real wage** in labor market equilibrium
- This chapter: determination of the **real interest rate** in goods market equilibrium
 - Consumption and Saving
 - Investment
Recall the *income-expenditure identity*:

\[Y = C + I + G + NX \]

The total aggregate demand for domestic goods consists of the sum of

- demand for goods for *consumption* \(C \)
- demand for goods for *investment* \(I \)
- net demand for domestic goods \(NX \)
- demand for goods for *government uses* \(G \)
The Trade Balance NX

Assumption 1: The economy is closed

- No international trade, the trade balance is zero, i.e. $NX = 0$
- No net factor payments, i.e. $NFP = 0$
- Therefore the current account $CA = NX + NFP = 0$
- We will consider the open economy later.
Government Spending G

Assumption 2a: Demand for goods on behalf of the government is given, $G = \bar{G}$

Assumption 2b: Taxes are given, $T = \bar{T}$

- Government spending G and taxation T are determined by the political process.
- We treat them as **exogenous** variables.
- Assume no transfers, $TR = 0$
- Note the government budget deficit: $D^{govt} = \bar{G} + INT - \bar{T}$.
Consumption and Saving

Under assumptions 1, 2a and 2b:

- **Private disposable income** Y^d is given by

$$Y^d = Y + INT - \bar{T}$$
Consumption and Saving

Under assumptions 1, 2a and 2b:

- **Private disposable income** Y^d is given by

 \[Y^d = Y + \text{INT} - \bar{T} \]

- **National saving** S is given by

 \[S = Y - C - \bar{G} = I \]
Consumption and Saving

Under assumptions 1, 2a and 2b:

- **Private disposable income** Y^d is given by
 \[Y^d = Y + \text{INT} - \bar{T} \]

- **National saving** S is given by
 \[S = Y - C - \bar{G} = I \]

- Households allocate Y^d for saving or consumption:
 \[

 Y^d = Y + \text{INT} - \bar{T} \\
 Y^d = S + C + \bar{G} + \text{INT} - \bar{T} \\
 Y^d = S^{priv} + C

 \]
Consumption and Saving

\[Y^d = S^{priv} + C \]

- Understanding consumption requires understanding the savings decision.
- Trade-off between *current* consumption and *future* consumption
Consumption and Saving

\[Y^d = S^{priv} + C \]

- Understanding consumption requires understanding the savings decision.
- Trade-off between *current* consumption and *future* consumption

Assumption 3: Trade-off occurs through utility maximization
Utility Maximization

Household chooses C_t and C_{t+1} to maximize utility

$$U(c_t, c_{t+1}) = u(c_t) + \beta u(c_{t+1})$$

where

- c_t is real current consumption
- c_{t+1} is real future consumption
- $0 < \beta < 1$ is a **discount factor** that captures impatience

subject to

period t budget constraint $P_t c_t + S_t = Y_t^d$

period $t + 1$ budget constraint $P_{t+1} c_{t+1} = Y_{t+1}^d + (1 + i_t) S_t$

where i_t is the nominal interest rate.
Equivalent to choosing S_t to maximize

$$u \left(\frac{Y_t^d - S_t}{P_t} \right) + \beta u \left(\frac{Y_{t+1}^d + (1 + i_t)S_t}{P_{t+1}} \right)$$
Equivalent to choosing S_t to maximize

$$u \left(\frac{Y^d_t - S_t}{P_t} \right) + \beta u \left(\frac{Y^d_{t+1} + (1 + i_t)S_t}{P_{t+1}} \right)$$

Optimality requires

$$-\frac{u_c(c_t)}{P_t} + \beta \frac{u_c(c_{t+1})}{P_{t+1}} (1 + i_t) = 0$$

where u_c is the first derivative and denotes marginal utility.

- Saving one additional dollar more in t, means consuming $1/P_t$ less in t which lowers utility by $u_c(c_t)/P_t$

- Saving one additional dollar more in t, means consuming $(1 + i_t)/P_{t+1}$ more in $t + 1$ which increases utility by $\beta \frac{u_c(c_{t+1})}{P_{t+1}} (1 + i_t)$.

- marginal cost of saving = marginal benefit of saving
A Specific Example

Suppose that

\[u(c) = \frac{c^{1 - \frac{1}{\sigma}}}{1 - \frac{1}{\sigma}}, \sigma > 0 \]
A Specific Example

Suppose that

\[u(c) = \frac{c^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}}, \sigma > 0 \]

Then

\[\frac{c_t^{-\frac{1}{\sigma}}}{P_t} = \beta \frac{c_{t+1}^{-\frac{1}{\sigma}}}{P_{t+1}} (1 + i_t) \]

\[r_t \] is the real interest rate

Note that \(1 + r_t \approx 1 + i_t - \pi_t \)
A Specific Example

Suppose that

\[u(c) = \frac{c^{1 - \frac{1}{\sigma}}}{1 - \frac{1}{\sigma}}, \sigma > 0 \]

Then

\[
\frac{c_t^{\frac{1}{\sigma}}}{P_t} = \beta \frac{c_{t+1}^{\frac{1}{\sigma}}}{P_{t+1}} (1 + i_t)
\]

\[\Leftrightarrow c_t = c_{t+1} \left(\beta \frac{P_t}{P_{t+1}} (1 + i_t) \right)^{-\sigma} \]
A Specific Example

Suppose that

\[u(c) = \frac{c^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}}, \sigma > 0 \]

Then

\[\frac{c_t^{-\frac{1}{\sigma}}}{P_t} = \beta \frac{c_{t+1}^{-\frac{1}{\sigma}}}{P_{t+1}} (1 + i_t) \]

\[\Leftrightarrow c_t = c_{t+1} \left(\beta \frac{P_t}{P_{t+1}} (1 + i_t) \right)^{-\sigma} \]

\[\Leftrightarrow c_t = c_{t+1} \left(\beta \frac{1 + i_t}{1 + \pi_{t+1}} \right)^{-\sigma} \]

\(r_t \) is the real interest rate

Note that \(1 + r_t = 1 + i_t - \pi_t + 1 \approx 1 + i_t - \pi_t + 1 \)
A Specific Example

Suppose that

\[u(c) = \frac{c^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}}, \sigma > 0 \]

Then

\[\frac{c_t^{\frac{1}{\sigma}}}{P_t} = \beta \frac{c_{t+1}^{\frac{1}{\sigma}}}{P_{t+1}} (1 + i_t) \]

\(\Leftrightarrow \)

\[c_t = c_{t+1} \left(\beta \frac{P_t}{P_{t+1}} (1 + i_t) \right)^{-\sigma} \]

\(\Leftrightarrow \)

\[c_t = c_{t+1} \left(\beta \frac{1 + i_t}{1 + \pi_{t+1}} \right)^{-\sigma} \]

\(\Leftrightarrow \)

\[c_t = c_{t+1} (\beta (1 + r_t))^{-\sigma} \]

\(r_t \) is the real interest rate

Note that

\[1 + r_t = \frac{1 + i_t}{1 + \pi_{t+1}} \approx 1 + i_t - \pi_{t+1} \]
Consider again the budget constraints

\[
\begin{align*}
P_t c_t + S_t &= Y_t^d \\
P_{t+1} c_{t+1} &= Y_{t+1}^d + (1 + i_t) S_t
\end{align*}
\]
Consider again the budget constraints

\[P_t c_t + S_t = Y_t^d \]
\[P_{t+1} c_{t+1} = Y_{t+1}^d + (1 + i_t) S_t \]

We can eliminate \(S_t \) and write

\[P_t c_t + \frac{P_{t+1} c_{t+1}}{1 + i_t} = Y_t^d + \frac{Y_{t+1}^d}{1 + i_t} \]
\[\Leftrightarrow c_t + \frac{c_{t+1}}{1 + r_t} = y_t^d + \frac{y_{t+1}^d}{1 + r_t} \]

where \(y_t^d = Y_t^d / P_t \) and \(y_{t+1}^d = Y_{t+1}^d / P_{t+1} \) denote real disposable incomes.
Final step: use $c_t = c_{t+1} (\beta(1 + r_t))^{-\sigma}$ $\iff c_{t+1} = c_t (\beta(1 + r_t))^\sigma$
and plug into

\[c_t = y_t^d + \frac{y_{t+1}^d}{1 + r_t} - \frac{c_{t+1}}{1 + r_t} \]
Final step: use $c_t = c_{t+1} \left(\beta (1 + r_t) \right)^{-\sigma} \Leftrightarrow c_{t+1} = c_t \left(\beta (1 + r_t) \right)^\sigma$

and plug into

$$c_t = y_t^d + \frac{y_{t+1}^d}{1 + r_t} - \frac{c_{t+1}}{1 + r_t}$$

$$\Leftrightarrow c_t = y_t^d + \frac{y_{t+1}^d}{1 + r_t} - \frac{c_t \left(\beta (1 + r_t) \right)^\sigma}{1 + r_t}$$
Final step: use $c_t = c_{t+1} (\beta (1 + r_t))^{-\sigma} \iff c_{t+1} = c_t (\beta (1 + r_t))^\sigma$

and plug into

$$c_t = y_t^d + \frac{y_{t+1}^d}{1 + r_t} - \frac{c_{t+1}}{1 + r_t}$$

$$\iff c_t = y_t^d + \frac{y_{t+1}^d}{1 + r_t} - \frac{c_t (\beta (1 + r_t))^\sigma}{1 + r_t}$$

$$\iff c_t = \left[y_t^d + \frac{y_{t+1}^d}{1 + r_t}\right] \left(1 + (\beta^\sigma (1 + r_t)^{\sigma - 1})\right)^{-1}$$

This last expression allows us to evaluate the determinants of consumption.
\[
c_t = \left[y_t^d + \frac{y_{t+1}^d}{1 + r_t} \right] (1 + (\beta^\sigma (1 + r_t)^{\sigma - 1}))^{-1}
\]

Result 1 Consumption is a fraction \((1 + (\beta^\sigma (1 + r_t)^{\sigma - 1}))^{-1}\) of the net present value (NPV) of lifetime wealth \([y_t^d + \frac{y_{t+1}^d}{1 + r_t}]\). There is consumption smoothing.
\[c_t = \left[y_t^d + \frac{y_{t+1}^d}{1 + r_t} \right] (1 + (\beta^\sigma (1 + r_t)^{\sigma-1}))^{-1} \]

Result 1 Consumption is a fraction \((1 + (\beta^\sigma (1 + r_t)^{\sigma-1}))^{-1}\) of the net present value (NPV) of lifetime wealth \([y_t^d + \frac{y_{t+1}^d}{1 + r_t}]\). There is consumption smoothing.

Result 2 Current consumption \(c_t\) increases with current real disposable income \(y_t^d\)
\[c_t = \left[y^d_t + \frac{y^d_{t+1}}{1 + r_t} \right] \left(1 + \left(\beta^\sigma (1 + r_t)^{\sigma - 1} \right) \right)^{-1} \]

Result 1 Consumption is a fraction \((1 + (\beta^\sigma (1 + r_t)^{\sigma - 1}))^{-1} \) of the net present value (NPV) of lifetime wealth \(\left[y^d_t + \frac{y^d_{t+1}}{1 + r_t} \right] \)

There is consumption smoothing.

Result 2 Current consumption \(c_t \) increases with current real disposable income \(y^d_t \)

Result 3 Current consumption \(c_t \) increases with future real disposable income \(y^d_{t+1} \)
\[c_t = \left[y_t^d + \frac{y_{t+1}^d}{1 + r_t} \right] \left(1 + (\beta^\sigma (1 + r_t)^{\sigma-1}) \right)^{-1} \]

Result 4 The result of an increase in the real interest rate \(r_t \) on current consumption is ambiguous
\[c_t = \left[y_t^d + \frac{y_{t+1}^d}{1 + r_t} \right] \left(1 + (\beta^\sigma (1 + r_t)^{\sigma - 1}) \right)^{-1} \]

Result 4 The result of an increase in the real interest rate \(r_t \) on current consumption is ambiguous

- **Substitution effect** –:
 \(r_t \uparrow \) makes saving more attractive and \(c_t \downarrow \). Depends on \(\sigma \), the *elasticity of intertemporal substitution*.

\("the real expected interest rate"\)}
\[c_t = \left[y_t^d + \frac{y_{t+1}^d}{1 + r_t} \right] \left(1 + (\beta \sigma (1 + r_t)^{\sigma-1}) \right)^{-1} \]

Result 4 The result of an increase in the real interest rate \(r_t \) on current consumption is ambiguous

- **Substitution effect** \(-\): \(r_t \uparrow \) makes saving more attractive and \(c_t \downarrow \). Depends on \(\sigma \), the *elasticity of intertemporal substitution*.
- **Income effect** \(+\): Keeping fixed the NPV of lifetime wealth \(r_t \uparrow \) lowers the price of \(c_{t+1} \) and expands the feasible consumption set, leading to \(c_t \uparrow \)
\[c_t = \left[y_t^d + \frac{y_{t+1}^d}{1 + r_t} \right] (1 + (\beta^\sigma (1 + r_t)^{\sigma-1}))^{-1} \]

Result 4 The result of an increase in the real interest rate \(r_t \) on current consumption is ambiguous

- **Substitution effect** -: \(r_t \uparrow \) makes saving more attractive and \(c_t \downarrow \). Depends on \(\sigma \), the *elasticity of intertemporal substitution*.
- **Income effect** +: Keeping fixed the NPV of lifetime wealth \(r_t \uparrow \) lowers the price of \(c_{t+1} \) and expands the feasible consumption set, leading to \(c_t \uparrow \)
- **Wealth effect** -: \(r_t \uparrow \) decreases the NPV of lifetime wealth and \(c_t \downarrow \)
Result 4 The result of an increase in the real interest rate r_t on current consumption is ambiguous

- **Substitution effect** $-$:
 $r_t \uparrow$ makes saving more attractive and $c_t \downarrow$. Depends on σ, the *elasticity of intertemporal substitution*.

- **Income effect** $+$:
 Keeping fixed the NPV of lifetime wealth $r_t \uparrow$ lowers the price of c_{t+1} and expands the feasible consumption set, leading to $c_t \uparrow$

- **Wealth effect** $-$:
 $r_t \uparrow$ decreases the NPV of lifetime wealth and $c_t \downarrow$

Note, in reality π_{t+1} is unknown in period t and r_t is the real *expected* interest rate
\[
c_t = \left[y_t^d + \frac{y_{t+1}^d}{1 + r_t} \right] \left(1 + (\beta^\sigma (1 + r_t)^{\sigma-1}) \right)^{-1}
\]

\[
c_t = c_t^a + MPC_t y_t^d
\]

The **marginal propensity to consume** (MPC): If current real disposable income \(y_t^d \) increases, how much does current consumption \(c_t \) increase?

\[
MPC_t = \frac{1}{1 + (\beta^\sigma (1 + r_t)^{\sigma-1})}
\]
\[c_t = \left[y_t^d + \frac{y_{t+1}^d}{1 + r_t} \right] \left(1 + (\beta^\sigma (1 + r_t)^{\sigma-1}) \right)^{-1} \]

\[c_t = c_t^a + MPC_t y_t^d \]

The **marginal propensity to consume** \((MPC)\): If current real disposable income \(y_t^d\) increases, how much does current consumption \(c_t\) increase?

\[MPC_t = \frac{1}{1 + (\beta^\sigma (1 + r_t)^{\sigma-1})} \]

- \(0 < MPC < 1\)
\[c_t = \left[y_t^d + \frac{y_{t+1}^d}{1 + r_t} \right] \left(1 + (\beta^\sigma (1 + r_t)^{\sigma - 1}) \right)^{-1} \]

\[c_t = c_t^a + MPC_t y_t^d \]

The **marginal propensity to consume** (MPC): If current real disposable income \(y_t^d \) increases, how much does current consumption \(c_t \) increase?

\[MPC_t = \frac{1}{1 + (\beta^\sigma (1 + r_t)^{\sigma - 1})} \]

- \(0 < MPC < 1 \)
- if \(\sigma > 1 \), substitution effect dominates income effect and \(MPC_t(r_t) \)
\[
ct = \left[y_t^d + \frac{y_{t+1}^d}{1 + r_t} \right] (1 + (\beta^\sigma(1 + r_t)^{\sigma-1}))^{-1}
\]

\[
ct = c_t^a + MPC_t y_t^d
\]

The **marginal propensity to consume** \((MPC)\): If current real disposable income \(y_t^d\) increases, how much does current consumption \(c_t\) increase?

\[
MPC_t = \frac{1}{1 + (\beta^\sigma(1 + r_t)^{\sigma-1})}
\]

- \(0 < MPC < 1\)
- if \(\sigma > 1\), substitution effect dominates income effect and \(MPC_t(r_t)\)
- if \(\sigma < 1\), income effect dominates substitution effect and \(MPC_t(r_t)\)
Question: Do tax rebates stimulate consumer spending?

A tax rebate of $800 raises \(y_d t \) by \(\frac{800}{P_t} \). The rebate must be financed today by increased government borrowing at an interest rate \(1 + i_t \). But must eventually be paid by higher taxes in the future: so \(y_d t+1 \) decreases by \((1 + r_t)\frac{800}{P_{t+1}} = (1 + r_t)\frac{800}{P_t} \). The NPV of lifetime wealth is unchanged:

\[
\left[y_d t + \frac{800}{P_t} + y_d t+1 - (1 + r_t)\frac{800}{P_{t+1}} \right] = y_d t + y_d t+1.
\]

Ricardian Equivalence: Tax rebates have no effect on consumption! Theoretical prediction: most consumers will save their tax rebates and not spend them (as in rebate of 2001).
Question: Do tax rebates stimulate consumer spending?

- A tax rebate of $800 raises y_t^d by $800/P_t$
Question: Do tax rebates stimulate consumer spending?

- A tax rebate of $800 raises y^d_t by $800/P_t$
- The rebate must be financed today by increased government borrowing at an interest rate $1 + i_t$.
- But must eventually be paid by higher taxes in the future: so y_{t+1}^d decreases by $(1 + i_t)800/P_{t+1} = (1 + r_t)800/P_t$
Question: Do tax rebates stimulate consumer spending?

- A tax rebate of $800 raises y_t^d by $800/P_t$
- The rebate must be financed today by increased government borrowing at an interest rate $1 + i_t$.
- But must eventually be paid by higher taxes in the future: so y_{t+1}^d decreases by $(1 + i_t)$\$800/P_{t+1} = (1 + r_t)$\$800/P_t$
- The NPV of lifetime wealth is unchanged:

\[
\left[y_t^d + \frac{y_{t+1}^d}{1 + r_t} - \frac{(1 + r_t)\$800}{P_t} \right] = y_t^d + \frac{y_{t+1}^d}{1 + r_t}
\]
Question: Do tax rebates stimulate consumer spending?

- A tax rebate of $800 raises d_t by $800/P_t$
- The rebate must be financed today by increased government borrowing at an interest rate $1 + i_t$.
- But must eventually be paid by higher taxes in the future: so d_{t+1} decreases by $(1 + i_t)800/P_{t+1} = (1 + r_t)800/P_t$
- The NPV of lifetime wealth is unchanged:

\[
\left[d_t + \frac{y^{d}_t}{P_t} + \frac{y^{d}_{t+1} - (1 + r_t)800/P_t}{1 + r_t} \right] = \frac{y^{d}_t}{1 + r_t} + \frac{y^{d}_{t+1}}{1 + r_t}
\]

- **Ricardian Equivalence**: Tax rebates have no effect on consumption!
- Theoretical prediction: most consumers will save their tax rebates and not spend them (as in rebate of 2001).
Summarizing what we have so far:

\[Y = C + I + \bar{G} \]

\[Y = P \left(c^a(r_t) + MPC \times y^d \right) + I + \bar{G} \]

\[Y = C^a(r_t) + MPC \times Y^d + I + \bar{G} \]

- \(\bar{G} \) exogenous
- \(C \) depends positively on current disposable income \(Y^d \) through \(MPC \)
- We will assume from now on that \(\sigma \approx 1 \) and therefore that \(MPC \) is constant and \(C \) depends negatively on \(r_t \).
- We still need to determine what drives investment \(I \).
Why is investment important?

- Investment fluctuates sharply over the business cycle, so we need to understand investment to understand the business cycle.
- Investment plays a crucial role in economic growth:

\[K_{t+1} = (1 - \delta)K_t + x_t \]

where \(x_t \) is real investment and \(K_t \) is the real capital stock and remember

\[\frac{\Delta y_t}{y_t} = \frac{\Delta A_t}{A_t} + \alpha \frac{\Delta K_t}{K_t} + (1 - \alpha) \frac{\Delta N_t}{N_t} \]
In the previous chapter we derived the demand for capital

\[K^d = (A\alpha)^{\frac{1}{1-\alpha}} \left(\frac{R}{P} \right)^{-\frac{1}{1-\alpha}} N \]

- Demand for capital is such that \(MP_K = \frac{R}{P} \)
In the previous chapter we derived the demand for capital

\[K^d = (A\alpha)^{\frac{1}{1-\alpha}} \left(\frac{R}{P} \right)^{-\frac{1}{1-\alpha}} N \]

- Demand for capital is such that \(MP_K = \frac{R}{P} \)
- \(\frac{R}{P} \) is real the rental price of capital or the \textbf{user cost of capital}
In the previous chapter we derived the demand for capital

\[K^d = (A\alpha)^{\frac{1}{1-\alpha}} \left(\frac{R}{P} \right)^{-\frac{1}{1-\alpha}} N \]

- Demand for capital is such that \(MP_K = \frac{R}{P} \)
- \(\frac{R}{P} \) is real the rental price of capital or the user cost of capital
- Demand for capital depends negatively on the user cost of capital
 \[\frac{R}{P} = r + \delta \]
- foregone real interest \(r_t \)
- depreciation \(\delta \)
For someone that saves by buying e.g. a government bond:

\[-\frac{u_c(c_t)}{P_t} + \beta \frac{u_c(c_{t+1})}{P_{t+1}} (1 + i_t) = 0\]
For someone that saves by buying e.g. a government bond:

\[- \frac{u_c(c_t)}{P_t} + \beta \frac{u_c(c_{t+1})}{P_{t+1}} (1 + i_t) = 0\]

For someone that saves by buying a unit of capital in t and rents it out to firms in $t + 1$:

\[- \frac{u_c(c_t)}{P_t} + \beta \frac{u_c(c_{t+1})}{P_{t+1}} \left(\frac{R_{t+1} + P_{t+1}(1 - \delta)}{P_t} \right) = 0\]
For someone that saves by buying e.g. a government bond:

\[- \frac{u_c(c_t)}{P_t} + \beta \frac{u_c(c_{t+1})}{P_{t+1}} (1 + i_t) = 0\]

For someone that saves by buying a unit of capital in \(t\) and rents it out to firms in \(t + 1\):

\[- \frac{u_c(c_t)}{P_t} + \beta \frac{u_c(c_{t+1})}{P_{t+1}} \left(\frac{R_{t+1} + P_{t+1}(1 - \delta)}{P_t} \right) = 0\]

Therefore

\[(1 + i_t) = \frac{R_{t+1} + P_{t+1}(1 - \delta)}{P_t}\]

\[\frac{P_t}{P_{t+1}} (1 + i_t) = \frac{R_{t+1}}{P_{t+1}} + (1 - \delta)\]

\[1 + r_t = \frac{R_{t+1}}{P_{t+1}} + (1 - \delta)\]

\[\Leftrightarrow \frac{R_{t+1}}{P_{t+1}} = r_t + \delta\]
If today's real interest rate is high, tomorrow's user cost R_{t+1}/P_{t+1} is high, the desired capital stock for tomorrow is low. \[R_{t+1}/P_{t+1} = r_t + \delta \]

If today's real interest rate is low, tomorrow's user cost is low, the desired capital stock for tomorrow is high. \[R_{t+1}/P_{t+1} = r_t + \delta \]

Again note, in reality the future is unknown and r_t is the expected real interest rate.

Bottomline: Demand for investment depends negatively on the (expected) real interest rate!
\[
\frac{R_{t+1}}{P_{t+1}} = r_t + \delta
\]

- If today’s real interest rate is high, tomorrow’s user cost \(\frac{R_{t+1}}{P_{t+1}} \) is high, the desired capital stock for tomorrow is low.
 \(\Rightarrow \) today’s investment is low
\[
\frac{R_{t+1}}{P_{t+1}} = r_t + \delta
\]

- If today’s real interest rate is high, tomorrow’s user cost \(\frac{R_{t+1}}{P_{t+1}} \) is high, the desired capital stock for tomorrow is low.
 \(\Rightarrow \) today’s investment is low

- If today’s real interest rate is low, tomorrow’s user cost \(\frac{R_{t+1}}{P_{t+1}} \) is low, the desired capital stock for tomorrow is high.
 \(\Rightarrow \) today’s investment is high
\[
\frac{R_{t+1}}{P_{t+1}} = r_t + \delta
\]

- If today’s real interest rate is high, tomorrow’s user cost \(\frac{R_{t+1}}{P_{t+1}} \) is high, the desired capital stock for tomorrow is low.
 \(\Rightarrow \) today’s investment is low

- If today’s real interest rate is low, tomorrow’s user cost \(\frac{R_{t+1}}{P_{t+1}} \) is low, the desired capital stock for tomorrow is high.
 \(\Rightarrow \) today’s investment is high

- Again note, in reality the future is unknown and \(r_t \) is the expected real interest rate.
\[
\frac{R_{t+1}}{P_{t+1}} = r_t + \delta
\]

- If today’s real interest rate is high, tomorrow’s user cost \(\frac{R_{t+1}}{P_{t+1}} \) is high, the desired capital stock for tomorrow is low.
 \(\Rightarrow \) today’s investment is low

- If today’s real interest rate is low, tomorrow’s user cost \(\frac{R_{t+1}}{P_{t+1}} \) is low, the desired capital stock for tomorrow is high.
 \(\Rightarrow \) today’s investment is high

- Again note, in reality the future is unknown and \(r_t \) is the expected real interest rate.

- Bottomline: Demand for investment depends negatively on the (expected) real interest rate!
Result 1: Current investment \(x_t \) depends negatively on \(r_t \) since it increases the user cost of capital which lowers the desired capital stock \(K_{t+1}^d \).

Result 2: Current investment \(x_t \) depends positively on total factor productivity tomorrow \(A_{t+1} \) because it raises the desired capital stock \(K_{t+1}^d \).

Result 3: Current investment \(x_t \) depends positively on labor input tomorrow \(N_{t+1} \) because it raises the desired capital stock \(K_{t+1}^d \).

\[
K_{t+1}^d = (A_{t+1} \alpha)^{\frac{1}{1-\alpha}} (r_t + \delta)^{-\frac{1}{1-\alpha}} N_{t+1}
\]
\[
K_{t+1}^d = (1 - \delta)K_t + x_t
\]
\[K_{t+1}^d = (A_{t+1} \alpha) \left(r_t + \delta \right)^{-\frac{1}{1-\alpha}} N_{t+1} \]
\[K_{t+1}^d = (1 - \delta) K_t + x_t \]

Result 1 Current investment \(x_t = \frac{I_t}{P_t} \) depends negatively on \(r_t \) since it increases the user cost of capital which lowers the desired capital stock \(K_{t+1}^d \).
\[K_{t+1}^d = (A_{t+1}^\alpha)^{\frac{1}{1-\alpha}} (r_t + \delta)^{-\frac{1}{1-\alpha}} N_{t+1} \]
\[K_{t+1}^d = (1 - \delta) K_t + x_t \]

Result 1 Current investment \(x_t = \frac{l_t}{P_t} \) depends negatively on \(r_t \) since it increases the user cost of capital which lowers the desired capital stock \(K_{t+1}^d \).

Result 2 Current investment \(x_t = \frac{l_t}{P_t} \) depends positively on total factor productivity tomorrow \(A_{t+1} \) because it raises the desired capital stock \(K_{t+1}^d \).
\[
K_{t+1}^d = (A_{t+1} \alpha)^{\frac{1}{1-\alpha}} (r_t + \delta)^{-\frac{1}{1-\alpha}} N_{t+1}
\]
\[
K_{t+1}^d = (1 - \delta) K_t + x_t
\]

Result 1 Current investment \(x_t = \frac{l_t}{P_t} \) depends negatively on \(r_t \) since it increases the user cost of capital which lowers the desired capital stock \(K_{t+1}^d \).

Result 2 Current investment \(x_t = \frac{l_t}{P_t} \) depends positively on total factor productivity tomorrow \(A_{t+1} \) because it raises the desired capital stock \(K_{t+1}^d \).

Result 3 Current investment \(x_t = \frac{l_t}{P_t} \) depends positively on labor input tomorrow \(N_{t+1} \) because it raises the desired capital stock \(K_{t+1}^d \).
Summarizing what we have so far:

\[Y = C + I + \bar{G} \]

\[Y = P \left(c^a(\bar{r}_t) + MPC \times y^d \right) + I(\bar{r}_t) + \bar{G} \]

\[Y = C^a(\bar{r}_t) + MPC \times Y^d + I(\bar{r}_t) + \bar{G} \]

- \(\bar{G} \) exogenous
- \(C \) depends positively on current disposable income \(Y^d \) through \(MPC \), and negatively on \(r_t \)
- \(I \) depends negatively on \(r_t \).
Goods market equilibrium

Recall that in a closed economy:

\[S = I = S^{priv} - D^{govt} \]

- We took \(D^{govt} \) as exogenous
- \(S^{priv} = Y^d - C \) private savings increases with \(r \), therefore national saving \(S \) increases with \(r \)
- \(I \) decreases with the real interest rate
- **Goods market equilibrium** occurs at the real interest rate \(r \) for which savings equal investment.
Saving-Investment Diagram

- Real interest rate, \(r \)
- Desired national saving, \(S^d \), and desired investment, \(I^d \)
- Saving curve, \(S \)
- Investment curve, \(I \)

The diagram shows the equilibrium point \(E \) where the saving curve and investment curve intersect at a real interest rate of 6% and desired national saving and investment both equal to 1000.
Shifts in the Saving Curve

e.g. higher current or future disposable income
Shifts in the Investment Curve

- e.g. higher future productivity, employment
The Real Interest Rate