1 GDP, TFP, and MPL

The following data give real GDP, Y, capital, K, and labor, N, for Macroland. Assume that the production function takes the following Cobb-Douglas form: $Y_t = A_t K_t^{1/3} N_t^{2/3}$.

<table>
<thead>
<tr>
<th>Year</th>
<th>Y</th>
<th>K</th>
<th>N</th>
<th>A</th>
<th>$\Delta A/A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>2000</td>
<td>3000</td>
<td>250</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>2011</td>
<td>2200</td>
<td>3100</td>
<td>260</td>
<td>3.494</td>
<td>6.00%</td>
</tr>
<tr>
<td>2012</td>
<td>2100</td>
<td>3050</td>
<td>240</td>
<td>3.750</td>
<td>1.23%</td>
</tr>
</tbody>
</table>

a. Calculate total factor productivity growth between 2010 and 2011, and between 2011 and 2012

Solution: $A_t = Y_t / (K_t^{1/3} N_t^{2/3})$

<table>
<thead>
<tr>
<th>Year</th>
<th>$\Delta Y/Y$</th>
<th>$\Delta A/A$</th>
<th>$\Delta K/K$</th>
<th>$\Delta N/N$</th>
<th>$\Delta Y/Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 – 2011</td>
<td>10.00%</td>
<td>6.00%</td>
<td>(1/3)(3.33%)</td>
<td>(2/3)(4.00%)</td>
<td>9.77%</td>
</tr>
<tr>
<td>2011 – 2012</td>
<td>-4.55%</td>
<td>1.23%</td>
<td>(1/3)(-1.61%)</td>
<td>(2/3)(-7.69%)</td>
<td>-4.43%</td>
</tr>
</tbody>
</table>

b. Decompose contributions to real GDP growth from the capital stock, labor, and TFP

Solution: $\Delta Y/Y \approx \Delta A/A + \alpha \Delta K/K + (1 - \alpha) \Delta N/N$

<table>
<thead>
<tr>
<th>Year</th>
<th>$MP_N = \frac{dY}{dN}$</th>
<th>$\frac{dY}{dN}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>5.33</td>
<td>5.33</td>
</tr>
<tr>
<td>2011</td>
<td>5.64</td>
<td>5.64</td>
</tr>
<tr>
<td>2012</td>
<td>5.83</td>
<td>5.83</td>
</tr>
</tbody>
</table>

Note: $\Delta Y/Y = \frac{Y_{t+1} - Y_t}{Y_t}$

2 Labor market dynamics, taxes, and the minimum wage

Based on ABC Ch. 3 NP #6

Suppose that the production function is $Y = 9K^{0.5}N^{0.5}$. The capital stock is $K = 25$. The labor supply curve is $N_s = 100[(1 - \tau)w]^2$, where w is the real wage rate, τ is the tax on labor income, and hence $(1 - \tau)w$ is the after-tax real wage rate.

a. Assume the tax on labor income, τ, equals zero. Find the equation of the labor demand curve. Calculate the equilibrium levels of the real wage and employment, the level of full-employment output, and the total after-tax wage income of workers.

Solution: $MP_N = \frac{dY}{dN} = 4.5(0.5 N^{-0.5}) = w \iff N^{0.5} = \frac{4.5K^{0.5}}{w} \iff N = 506.25/w^2$
Equating $N^D = N^S \iff 506.25/w^2 = 100[(1-\tau)w]^2 \iff w^4 = 5.0625 \iff w = 1.5$

$N^S = 100(1.5)^2 = 225$

$Y = 9(25)^{0.5}(225)^{0.5} = 675$

After-tax wage income = $(1-\tau)wN^S = 1.5(225) = 337.5$

b. Repeat part (a) under the assumption that the tax rate on labor income, τ, equals 0.4.

Solution: If $\tau = 0.4$, then $N^S = 100[(1-\tau)w]^2 = 36w^2$

$MP_N = \frac{4.5(25)^{0.5}}{N^S} = \frac{22.5}{N^S} = w$

Substituting in for w, $N^S = 36(\frac{22.5}{N^S})^2 \iff (N^S)^2 = 18225 \iff N = 135$

$Y = 9(25)^{0.5}(135)^{0.5} = 522.85$

After-tax wage income = $(1-\tau)wN^S = (0.6)(1.94)(135) = 156.86$

So the effect of the tax is to reduce labor supply, bidding up the wage rate, but the decline in output reduces pre-tax wage income, with a bigger drop in after-tax wage income.

c. Suppose that a minimum wage of $w = 2$ is imposed. If the tax rate on labor income, τ, equals zero, what are the resulting values of employment and the real wage? Does the introduction of the minimum wage increase the total income of workers, taken as a group?

Solution: Without a tax on labor income, the market clearing wage rate was $1.5 in part (a), so a minimum wage of $2 would be binding ($w = 2$). So $N^D = 506.25/(2^2) = 126.6$

$N^S = 100(w)^2 = 100(2)^2 = 400$

Unemployment = $N^S - N^D = 400 - 126.6 = 273.4$

After-tax wage income = $wN = (2)(126.6) = 253.2$, which is lower than without the minimum wage because employment has fallen considerably.

3 Okun’s law

Suppose the Okun’s law coefficient is 2, the full-employment level of output is $17,000 billion, and the natural rate of unemployment is 5.5%.

a. What is the current level of output if the current unemployment rate is 8%? How big is the “output gap” between actual and potential GDP?

Solution:

\[
\frac{y - \bar{y}}{y} = -2(u - \bar{u}) \iff \frac{y}{17,000} = -2(0.08 - 0.055) + 1 \iff y = 16,150
\]

Output gap = $\frac{y - \bar{y}}{y} = \frac{16,150 - 17,000}{17,000} = -5.0\%$

b. Suppose the unemployment rate falls to 5%; what are the current levels of output and output gap?

Solution:

\[
\frac{y - \bar{y}}{y} = -2(u - \bar{u}) \iff \frac{y}{17,000} = -2(0.05 - 0.055) + 1 \iff y = 17,170
\]

Output gap = $\frac{y - \bar{y}}{y} = \frac{17,170 - 17,000}{17,000} = +1.0\%$

c. Suppose structural changes in the economy raise the natural rate of unemployment to 6.5%, and lowers the full-employment level of output to $16,000 billion. If the current unemployment rate is 8%, what is the current level of output? The output gap?

Solution:

\[
\frac{y - \bar{y}}{y} = -2(u - \bar{u}) \iff \frac{y}{16,000} = -2(0.08 - 0.065) + 1 \iff y = 15,520
\]

Output gap = $\frac{y - \bar{y}}{y} = \frac{15,520 - 16,000}{16,000} = -3.0\%$
4 Government deficits and interest rates
2008 Prelim #1

What happens to the real interest rate and investment after an increase in the government budget deficit for a closed economy?

Solution: As a result of the rise in the budget deficit, national saving decreases (public saving falls while private saving remains unchanged). Consequently, the equilibrium amount of saving/investment falls and the equilibrium real interest rate \(r \) increases. The rise in the budget deficit “crowds out” private investment.

Mathematically, \(S = Y - C - G \), so if \(G \uparrow, S \downarrow \). The savings curve shifting inwards (to the left) increases the equilibrium interest rate. \(S = I \), so \(S \downarrow \iff I \downarrow \).

5 Derive optimal savings using the Euler equation

Calculate period \(t \) savings or borrowing for the following two-period consumption-savings problems using the following parameters:

a. \(U(c_t, c_{t+1}) = \log(c_t) + \beta \log(c_{t+1}) \)

b. \(U(c_t, c_{t+1}) = \frac{c_t^{1 - \frac{1}{\sigma}}}{1 - \frac{1}{\sigma}} + \beta \frac{c_{t+1}^{1 - \frac{1}{\sigma}}}{1 - \frac{1}{\sigma}} \)

- \(y_t = 50,000 \)
- \(y_{t+1} = 10,000 \)
- \(\beta = 0.95 \)
- \(\sigma = 1.25 \)
- \(r_t = 4\% \)

If \(Y_t \) increases by $1, how will \(c_t \) change? Which utility form omits the higher marginal propensity to consume?

Solution (a): The set-up of the problem is the same under both utility forms. Starting with log utility:

\[
\max_{c_t, c_{t+1}} \log(c_t) + \beta \log(c_{t+1}) \quad \text{s.t.} \quad P_t c_t + S_t = Y_t \quad \text{(period} \ t \text{ budget constraint)}
\]

\[
P_{t+1} c_{t+1} = Y_{t+1} + S_t (1 + i_t) \quad \text{(period} \ t+1 \text{ budget constraint)}
\]

\(c_t, c_{t+1} \geq 0 \) (non-negativity constraints)

The marginal utility of consumption is infinite at zero consumption, so the non-negativity constraints will never bind and we can drop them. Combining the period \(t \) and \(t+1 \) budget constraints into an inter-temporal budget constraint with lagrange multiplier \(\lambda_t \) yields:

\[
\max_{c_t, c_{t+1}} \log(c_t) + \beta \log(c_{t+1}) \quad \text{s.t.} \quad P_t c_t + \frac{P_{t+1} c_{t+1}}{1 + r_t} = Y_t + \frac{Y_{t+1}}{1 + r_t} \quad \text{(}\lambda_t\text{)}
\]

First-order conditions:

\[
[c_t]: \quad u_c(c_t) - P_t \lambda_t = 0 \iff \lambda_t = \frac{u_c(c_t)}{P_t} \iff \lambda_t = \frac{1}{P_t c_t}
\]

\[
[c_{t+1}]: \quad \beta u_c(c_{t+1}) - \frac{P_{t+1} \lambda_t}{1 + r_t} = 0 \iff \lambda_t = \beta \frac{1 + i_t}{P_{t+1} c_{t+1}}
\]

Combining first-order conditions to derive the Euler equation:

\[
u_c(c_t) = \beta \frac{u_c(c_{t+1}) (1 + i_t) (P_t)}{P_{t+1}} \iff u_c(c_t) = \beta u_c(c_{t+1}) (1 + i_t) \iff c_{t+1} = \beta c_t (1 + r_t)
\]

Divide the budget constraint through by \(P_t \) to express income in real terms (\(y_t = \frac{Y_t}{P_t} \)) and plug in the above expression for \(c_{t+1} \):
\[c_t = y_t + \frac{y_{t+1}}{1+r_t} - \beta \frac{c_{t+1}}{1+r_t} \quad \iff \quad c_t = \frac{1}{1+\beta} [y_t + \frac{y_{t+1}}{1+r_t}] = \frac{1}{1.95} [50,000 + \frac{10,000}{1.04}] = $30,572 \]

\[s_t = y_t - c_t = 50,000 - 30,572 = $19,428 \]

The marginal propensity to consume out of an increase in \(y_t = \frac{1}{1.95} = 0.5128 \)

Solution (b):

\[
\max_{c_t, c_{t+1}} \frac{c_t^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}} + \beta \frac{c_{t+1}^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}} \quad \text{s.t.} \quad P_t c_t + \frac{P_{t+1} c_{t+1}}{1+r_t} = Y_t + \frac{Y_{t+1}}{1+r_t} \quad (\lambda_t)
\]

Combining first-order conditions to derive the Euler equation:

\[
c_t^{-1/\sigma} = \beta c_{t+1}^{-1/\sigma} \left(\frac{1+r_t}{P_{t+1}} \right) \quad \iff \quad c_t^{-1/\sigma} = \beta c_{t+1}^{-1/\sigma} \left(\frac{1+r_t}{1+r_{t+1}} \right) \quad \iff \quad c_t = c_{t+1} (\beta (1+r_t))^{-\sigma}
\]

Plug the above expression for \(c_{t+1} \) into the budget constraint:

\[
c_t = y_t + \frac{y_{t+1}}{1+r_t} - \frac{c_t (\beta (1+r_t))^{\sigma}}{1+r_t} \quad \iff \quad c_t = (1 + \beta (1+r_t)^{\sigma-1})^{-1} [y_t + \frac{y_{t+1}}{1+r_t}]
\]

\[
c_t = (1 + 0.95^{1.25}(1.04)^{0.25})^{-1} [50,000 + \frac{10,000}{1.04}] = $30,617
\]

\[s_t = y_t - c_t = 50,000 - 30,617 = $19,383 \]

The marginal propensity to consume (MPC) out of an increase in \(y_t = (1 + 0.95^{1.25}(1.04)^{0.25})^{-1} = 0.5136 \), so the MPC is higher under the constant relative risk aversion (CRRA) preferences in part (b), with \(\sigma = 1.25 \), than under log utility (which happens to be a special case of CRRA with \(\sigma = 1 \))