
ANTICIPATIONS
OF THE

GEOMETRIC PHASE
The notion that a quantum system's

wovefunction may not return to its original
phase after its parameters cycle slowly around

a circuit had many precursors—in polarized
light, radio waves, molecules, matrices

and curved surfaces.

Michael Berry

In science we like to emphasize the novelty and originality
of our ideas. This is harmless enough, provided it does not
blind us to the fact that concepts rarely arise out of
nowhere. There is always a historical context, in which
isolated precursors of the idea have already appeared.
What we call "discovery" sometimes looks, in retrospect,
more like emergence into the air from subterranean
intellectual currents.

The geometric phase, whose discovery I reported early
in 1983, is no exception to this rule.1 The paper was about
quantum systems forced round a cycle by a slow circuit of
parameters that govern them; it gave rise to a number of
applications and several generalizations, documented in a
series of reviews and books.2"5 My purpose here is to look
back at some early studies that with hindsight we see as
particular examples of the geometric phase or the central
idea underlying it.

Parallel transport
First I need to explain this central idea. It is the geometric
phenomenon of anholonomy resulting from parallel trans-
port. This is a type of nonintegrability, arising when a
quantity is slaved to parameters so as to have no local rate
of change when those parameters are altered, but never-
theless fails to come back to its original value when the pa-
rameters return to their original values after being taken
round a circuit.

Michael Berry is a professor of physics at the University of
Bristol, in Bristol, England.

A physical example of this "global change without
local change" is the Foucault pendulum (figure 1), whose
direction of swing, described by a unit vector e, is slaved to
the local vertical, described by the radial unit vector r.
The slaving law is parallel transport, which means that
the direction of swing does not rotate about the vertical—
that is, e has no component of angular velocity along r.
However, in spite of never being rotated, e does not return
to its original value when, after a day, r has completed a
circuit C (here a circle of latitude). The anholonomy is the
angle between the initial and final swing directions e, and
is equal to the solid angle subtended at the Earth's center
byC.

A note about terminology: Although the anholonomy
of parallel transport of a vector on a curved surface was
known to Gauss nearly two centuries ago, the word seems
to have entered the literature through the study of
mechanics in the presence of constraints. A constraint is
holonomic if it can be integrated and thereby can reduce
the number of degrees of freedom, as with a rolling
cylinder. Otherwise, it is nonholonomic (or nonholono-
mous, or anholonomic), as with a rolling disk, which can
sway from side to side. According to the Oxford English
Dictionary the word was first used by Hertz in 1894.
Nowadays the concept of anholonomy is familiar to
geometers, but they often call it "holonomy," a reversal of
usage I consider a barbarism.

The geometric phase can be regarded as anholonomic
for the parallel transport of quantum states. Mathemat-
ically, quantum states are represented by unit vectors in
Hilbert space. Although these unit vectors are complex,
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Foucault pendulum at Griffith Observatory in
Los Angeles, and diagram showing its
anholonomy. The direction of swing does not
return to its initial value when the pendulum
completes its one-day trip around a circle of
latitude. (In the diagram, the direction of
swing e is parallel-transported around the
diurnal circuit Cby the local vertical r.) At
the latitude of Los Angeles, the direction of
swing comes back to its original value after 42
hours, and so the pit is marked off in 42
segments. (Courtesy of Edwin Krupp, Griffith
Observatory.) Figure 1

parallel transport can still be defined. A natural way to
implement it is by a slow cycle C of parameters in the
Hamiltonian governing the evolution of the system
according to Schrodinger's equation. The quantum adia-
batic theorem guarantees that if the system starts in the
instantaneous eigenstate labeled n, it will still be in the
state n at the end of the cycle C. However, the phase of the
state vector need not, and usually does not, return. Part of
this change—the geometric phase—is the manifestation of
anholonomy.

To give an account of the earlier work, I have first to
describe the geometric phase for spinning particles. This
concerns a spinor state corresponding to a definite value s
(integer or half-integer) for the component of spin along
some direction r. An example is a spin eigenstate
(s = ± V2) of a neutron in a magnetic field with direction r.
If the direction is cycled, that is, taken round a closed
curve Con the unit r sphere, the state acquires a geometric
phase equal to — s times the solid angle subtended by C at
the center of the sphere. As is well known, the spin-1/, case
is isomorphic to the general quantum two-state system,
where the Hamiltonian is a 2x2 complex Hermitian
matrix.

Coiled light
Raymond Y. Chiao, Akira Tomita and Yong-Shi Wu were
quick to apply the spin phase to optics, by regarding a light
beam as a stream of photons with quantization direction r
along the direction of propagation.2 The two states,
s = + 1, correspond to left- and right-handed circularly
polarized light. To cycle r they therefore had to cycle the

direction of propagation, which they accomplished by
sending the light along optical fibers that were coiled into
paths such as helices, and for which the initial and final
tangent directions r were parallel. An obvious way to
observe the geometric phase would be to split a beam of
(say) left circularly polarized light into two coherent
beams, send them along two oppositely coiled fibers,
recombine them and detect the resulting opposite geomet-
ric phases by interference. Instead, Chiao, Tomita and Wu
performed the simpler experiment of sending a single
beam of linearly polarized light along a single fiber. The
initial linear polarization is a particular superposition of
the s = + 1 and s = — 1 states, which acquire opposite
phases after passage through the fiber and so emerge in a
different superposition, corresponding again to linear
polarization, but now in a different direction. (The
"interference" and "superposition" techniques correspond
to two different general methods for detecting the phase,
employing, respectively, one state and two different
Hamiltonians or two states and one Hamiltonian.)

One manifestation of the geometric phase for light is
therefore a rotation of the direction of polarized light
(figure 2) after it has traveled along a coiled optical fiber.
The angle of rotation is equal to the solid angle through
which the fiber tangent r has turned, implying that the po-
larization has been parallel-transported. Chiao and his
coworkers themselves pointed out that this appears to be a
phenomenon of classical optics, which although originat-
ing in the quantum mechanics of spinning photons
survives the classical limit ft — 0 up to the level described
by Maxwell's equations. They did not, however, show how
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Fiber tangent r

Rotation of linear polarization by parallel
transport along a coiled optical fiber. The
vectors e and h represent the electric and
magnetic fields, respectively. Figure 2

the rotation of polarization is contained in Maxwell's
equations; nor had J. Neil Ross of the Central Electricity
Generating Board Laboratories, in Leatherhead, England,
who had demonstrated the rotation earlier, in a 1984
experiment. (Ross implicitly assumed the parallel trans-
port law.)

However, in a remarkable paper, published in 1941
(the year I was born) and the first of our "anticipations,"
Vassily V. Vladimirskii had, in effect, done just that, in an
extension of an earlier paper published in 1938 by Sergei
M. Rytov.6 Rytov was concerned with the short-wave
limiting asymptotics of electromagnetic waves in inhomo-
geneous media. He was dissatisfied with the conventional
derivations of the generalized Snell refraction law of
geometrical optics (ray curvature is equal to the compo-
nent of grad[log(refractive index)] perpendicular to the
ray), because this ignores the vector nature of light waves:
There had to be a transport law for the directions e and h
of the electric and magnetic fields. He showed that the
law is parallel transport—of the orthogonal triad consist-
ing of e, h and the ray direction r.

Vladimirskii's contribution—surprisingly modern in
tone—was to show that Rytov's law is nonintegrable and
implies the solid-angle law for the rotation of polarization.
Vladimirskii pointed out one consequence of his analysis:
Observation of polarization rotation of an outgoing ray
relative to a parallel incident ray does not imply anisotro-
py (or chirality) of the intervening medium, because it
could result from ray curvature induced by inhomogeneity
of the medium. He did not state that parallel transport
of the fields implies phase anholonomy for circularly
polarized rays, but Rytov came close, remarking that it
implies different phase velocities for the two circular
polarizations.

In essence, the theory that Vladimirskii and Rytov
developed contains the explanation of the experiments of
Chiao's group. Strictly speaking, however, Vladimirskii
and Rytov's analysis cannot be invoked, because those
experiments employed monomode fibers, which are too
thin for geometrical optics to be validly applied. It is
necessary to use the full Maxwell equations, either in a
modal analysis7 or, when recast as a Schrodinger-type
spinor equation, to enable immediate application of the
spin-1 geometric phase formula.5

It is worth pausing to note the political circumstances

in which Vladimirskii worked. In 1941, a few months
after he submitted his paper, the Soviet Union was
plunged into the turmoil of World War II by Hitler's
sudden invasion.

Polarization cycles
In a different application to optics, I considered not light
with a fixed state of polarization (circular, for example)
and changing direction, but the opposite, namely light
traveling in a fixed direction with a slowly changing state
of polarization.8 A way to accomplish this, and thereby
generate a geometric phase, would be through a transpar-
ent medium that was both anisotropic and chiral (such as a
liquid in strong electric and magnetic fields) and so
possessed both birefringence and gyrotropy. These prop-
erties would be reflected in the complex Hermitian
dielectric tensor of the medium, which could be varied
along the beam and then brought back to its original form.
(Actually what is relevant is only the 2x2 matrix
representing the components of the inverse of this tensor
perpendicular to the beam.)

This too had been anticipated, in a strikingly original
paper published 30 years before by S. Pancharatnam of
Bangalore.9 He was investigating the interference pat-
terns produced by plates of anisotropic crystal, and found
existing theory inadequate to explain what he saw. In
particular, he needed to define how two beams in different
polarization states (linear and elliptic, for example) could
have the same phase. He did this by considering the
intensity of the wave obtained by coherent linear superpo-
sition of the two beams. As the phases of the individual
beams are varied, this intensity waxes and wanes. When
it is maximum, the two beams are defined as being "in
phase." The two beams could represent successive states
in the polarization history of a single beam, so this
procedure also enabled him to define how a beam can
preserve its phase while its polarization state is altered
(not necessarily slowly).

Pancharatnam then made the important observation
that this law of phase preservation is nontransitive. Thus
a beam may start out with a polarization 1, which is
altered first to polarization 2, in phase with 1, then to 3, in
phase with 2, and then back to 1, in phase with 3; and yet
the final polarization-1 beam need not have the same
phase as the initial polarization-1 beam, in spite of the fact
that all three local phase changes were zero. To calculate
the phase change, he represented states of polarization as
points on the "Poincare sphere" (see figure 3). In this
picture, the poles represent left- and right-handed circular
polarization; points on the equator represent linear
polarizations (with the direction rotating by 180° in a 360°
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Poincare sphere of polarization states r. The
phase change associated with a circuit Cof

polarization states is half the solid angle
subtended by Cat the center of the

sphere. Figure 3

circuit, because two polarization orientations differing by
180° are the same); and all other points represent elliptic
polarizations. The path 1231 is a circuit C on the sphere,
and Pancharatnam discovered that the associated phase
change is half the solid angle subtended by C at the center
of the sphere.

Clearly, Pancharatnam discovered what we would
now call the geometric phase for polarization circuits of
light. To make the connection with the way we see things
nowadays, it is first necessary to know that the polariza-
tion associated with the point on the Poincare sphere
indicated by the unit vector r (that is, the corresponding
transverse electric field represented by the complex unit
vector e) is represented by the complex eigenvector of S T ,
where S is the vector of three 2x2 Pauli spin-1/,
matrices.10 (The components of r are the Stokes param-
eters of the polarization.) This relation between polariza-
tions and quantum states of spin-1/, particles—that is,
with two-state systems—is unsurprising, because any
polarization of light traveling in a fixed direction is a
superposition of two basis polarizations—for example, left
and right circular, or horizontal and vertical linear. The
crucial step is now to demonstrate that parallel transport
of these eigenvectors is equivalent to Pancharatnam's
phase preservation rule for the associated polarizations.
The "half the solid angle" rule follows at once from the
spin-V2 analogy.

Pancharatnam was a nephew of C. V. Raman, and so
belonged to the distinguished dynasty that includes the
astrophysicist S. Chandrasekhar, the liquid crystal physi-
cist S. Chandrasekhar, the crystallographer S. Ramase-
shan and the radioastronomer V. Radhakrishnan. When
Pancharatnam wrote about polarized light, he was only 22
years old. In spite of this brilliant beginning, his story
ended sadly, with his untimely death at the age of 35.

While writing this article I discovered some remark-
able papers written in 1975 by Martin S. Smith and
Kenneth G. Budden,11 who although unaware of the
earlier works by Vladimirskii and Pancharatnam never-
theless provide a more general viewpoint into which these
fit as special cases. Budden and Smith were studying the
propagation of short radio waves in the ionosphere, where
the "ray" or "WKB" approximation is appropriate. Such
wave fields are dominated by a complex exponential factor
whose phase is the familiar optical path length—the
integral of the local wavenumber. They called this path
integral "phase memory" because it depends on the
properties of the medium—the atmosphere—along the
entire propagation path. Thus it is nonintegrable, in
contrast to the wave amplitude, which in the simplest
theory is a "local" factor depending only on the properties

(such as refractive index) at the ends of the ray.
Budden and Smith's contribution was to show that in

all but a few cases the simplest theory is wrong, because
there is an additional factor, which they called "additional
memory," whose exponent also depends nonintegrably on
the propagation path. The additional memory may be real
or complex and so can contribute nonlocally to the phase
or the amplitude. They gave a theory covering a very
general class of waves, described by vectors whose
evolution along the ray is driven by a matrix embodying
the properties of the medium. Although they did not
consider cycles of the medium parameters, their general
formula expressing the additional memory as an integral
along the ray can be shown to be exactly the one we are
now familiar with in quantum mechanics, which can be
viewed as a special case where the driving matrix is
Hermitian and the ray parameter is time.12

Line of degeneracies of elements of a real
symmetric 2 x 2 matrix. The circuit d
encloses the line L of degeneracies and so
generates a geometric sign change; C2 does
not enclose L, and so does not generate such
a change. Figure 4
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As well as including technicalities that are still
interesting today,12 Budden and Smith gave many applica-
tions, demonstrating phase memory in seismic waves,
magnetohydrodynamic waves, electroacoustic plasma
waves and atmospheric acoustic gravity waves as well as i-
onospheric radio waves. (Readers are warned, however,
that Budden and Smith's initial illustrative example,11

predicting that light traversing a transparent and vari-
ably optically active refracting medium will exhibit
additional memory, is wrong because they employ an
unphysical constitutive relation. When this is corrected,
the additional memory is canceled by a part of the
ordinary memory.12)

Degeneracy
The existence of geometric phases implies that quantum
eigenstates are not single-valued under continuation of
parameters in the Hamiltonian. Thus expressed, phase
anholonomy appears to be a rather subtle property,
especially when contrasted with the more familiar single-
valued-ness demanded of wavefunctions under continu-
ation of position coordinates, which is necessary to get
quantized energy levels (in the harmonic oscillator, for
example). However, when detached from its original
quantum mechanical context, the geometric phase can be
regarded as an expression of a simple property of matrices
that depend on parameters—that is, of families of
matrices: Their eigenvectors are not single-valued when
parallel-transported via changes of the parameters. After
a parameter circuit C, the eigenvectors do not return to
their original values. In the class of complex Hermitian
matrices important for quantum physics, the failure to
return takes the form of a phase shift.

Special among Hermitian matrices are real symmet-
ric matrices, which in quantum mechanics can represent
Hamiltonians of systems with time-reversal symmetry—
for example, charged particles in electric, but not magnet-
ic, fields. The eigenvectors of these matrices are real, and
so the only phase anholonomy is 77, corresponding to a
change of sign of the eigenvectors. The sign change occurs
only if the circuit C encloses a degeneracy of the
transported state. The simplest case is that of 2x2
matrices

M
V i' w

Nuclear coordinate circuit. The circuit C is
in the space of nuclear coordinates X of

triatomic molecules. The circuit surrounds the
equilateral molecule, for which there is an

energy level degeneracy (at the conical
intersection). Figure 5

Here degeneracies in the u,v,w parameter space corre-
spond to the line v = 0, u = w, and so there is a sign change
in the eigenvectors only if Cencloses this line (see figure 4).

Such a simple property—even of 2 X 2 matrices—was
not well known in 1983. I could find no reference to it in
textbooks of matrix theory (and would welcome informa-
tion about any). Nevertheless, it was known, in particular
to quantum chemists studying the vibrations and rota-
tions of molecules. In the Born-Oppenheimer (adiabatic)
approximation, the coordinates of the nuclei are regarded
as parameters, to which quantum states of the electrons
are slaved. Nuclear configurations with symmetry can
give rise to degeneracy of the electronic energies. In 1958,
H. Christopher Longuet-Higgins, Uno Opik, Maurice H.
L. Pryce and Robert A. Sack noticed that in the solution of
a particular model the electronic wavefunctions changed
sign when the nuclear coordinates made a circuit of the
symmetric (degenerate) configuration (see figure 5).13

This is the TT anholonomy of real symmetric matrices,
recognized as a general phenomenon by Gerhard Herzberg
and Longuet-Higgins14 in 1963.

Longuet-Higgins and his coworkers realized that the
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Drumhead-shape circuit. The circuit Cis in
the space of boundary shapes of triangular

drums, and surrounds a shape for which the
vibration mode is degenerate. (The shapes
look the same because the circuit is small.)

The dark and light areas of the vibrating drums
correspond to the conventional labels + and — .

Note that the vibrations in the triangles at
the beginning and end of the circuit (the

triangles on either side of the arrow) differ
only in phase, by 180°. Figure 6

sign change has physical consequences when the nuclear
coordinates are themselves quantized instead of being
regarded as externally specified parameters: The vibra-
tion-rotation energies have half-odd-integer quantum
numbers, rather than the usual integer ones. They
remarked, "This half-oddness is at first sight strange, but
may be understood by noting that [around a circuit] the
electronic factor in the wavefunction will be multiplied by
— 1, so that the angular part of the nuclear factor must do
likewise if the total wavefunction is to be single-valued."
This is the phenomenon of pseudorotation, which has been
of considerable interest recently.15

Among mathematicians, the sign change was also
known. In his celebrated text on classical mechanics,
Vladimir I. Arnold describes it for a modal eigenfunction
of a vibrating membrane, or drum, whose boundary is
varied round a circuit C in the space of boundary shapes
surrounding a shape for which the mode is degenerate."1

For any point on the circuit, the drum eigenfunction is
divided by nodal lines into regions that may be convention-
ally labeled + and — . Around the circuit, the nodal lines
move over the domain and collide, disconnect and recon-
nect so as to change the + regions into — regions
continuously, and vice versa, as figure 6 illustrates for a
set of triangular membranes. Arnold traces the sign
change to a 1976 paper of Karen Uhlenbeck,17 but, as we
have seen, the chemists knew about it in 1958.

Curved surfaces
The 2x2 sign change is much older. I do not know when
this was first recognized as a property of matrices, but it is
implied by a result in Gaston Darboux's monumental 1896
treatise on the differential geometry of curved surfaces.1"
This might be the first example of phase anholonomy,
albeit the rudimentary TT case. Locally, a smooth surface
can be specified by its deviation z(x,y) from a plane, as
figure 7 indicates. From this function one can form the
2x2 real symmetric Hessian (curvature) matrix H(x,.y) of
second derivatives, and x and v can be regarded as
parameters. The eigenvalues of H are the principal
curvatures of the surface at (x,y)—that is, the greatest and
least curvatures of normal sections through the surface at
(x,y). The corresponding eigenvectors are the directions of
these special cuts, and are orthogonal. An unusual
feature of this example is that the eigenvectors can be
considered to lie in the parameter space, as well as being
functions of the parameters. Degeneracies (x,y) corre-
spond to equality of the two curvatures—that is, to
"umbilic points," where the surface is locally spherical
rather than ellipsoidal or saddle-shaped as it is at typical
points. Umbilics are singularities of the orthogonal net of
curvature lines. The sign change characterizes such a
singularity by a reversal of the curvature directions in a
circuit of it. Alternatively stated, the Poincare index, or
signed number of rotations associated with an oriented

circuit, of the field of curvature lines near an umbilic is
+ 72 or - %.

A complete characterization of the geometry of an
umbilic is complicated.19 Figure 8 shows the three typical
patterns of curvature lines, one of which (the "star") has
index — V2 and the others of which (the "lemon" and the
"monstar") have index + V2. The half-integer index is
typical of singularities of line fields (which do not have
arrows), such as those associated with eigenvectors of
families of matrices, in contrast to the integer indices of
vector fields (which do have arrows). The star and lemon
singularities are familiar, with one of the two orthogonal
sets of lines deleted, as disclinations in the molecular line
fields of liquid crystals,"021 and in fingerprints.

In 1976, Anthony J. Stone22 generalized the connec-
tion between degeneracy and the sign change1314 by
considering complex Hamiltonians. He realized that in
this general case, where the wavefunctions are also
complex, an arbitrary phase, not just n, could be generated
by taking a system round a circuit C. Without giving a for-

Curvature lines

Curvatures at a
point on a surface.
Locally, a smooth
surface can be
specified by its
deviation z(x,y)
from a
plane. Figure 7
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Star Lemon Monstar

The three typical patterns of curvature lines near an umbilic singularity, where the surface is locally spherical.
The star has index — '/,. The lemon and monstar have index + '/,. Figure 8

mula for the phase, he showed how its existence, for a
succession of circuits that together cover a closed surface,
could provide a topological indicator of the presence of a
degeneracy.

Another anticipation, of which I was regrettably
unaware when writing my original paper,' was the
important work by C. Alden Mead and Donald G. Truhlar
in 1979, containing two developments in the theory of
general complex Hamiltonians.23 This theory would
apply, for example, to systems with magnetic fields, which
do not have time-reversal symmetry. Like Longuet-
Higgins and his coworkers, Mead and Truhlar were
studying molecules in the Born-Oppenheimer approxima-
tion. The first of the developments was that they not only
realized that the electronic states must acquire a phase
when the nuclear coordinates are cycled, but they also
gave a general formula for the phase in the case of
infinitesimal circuits. Second, they discovered another
role for the expression whose line integral around the
circuit generates the phase: It is the potential of an
effective "gauge force" contributing to the dynamics of the
nuclei. The effect of this force is to modify the nuclear vi-
bration-rotation spectrum, as in the special case of
pseudorotation mentioned earlier.

As elaborated elsewhere,24 in 1983 I was familiar with
the 77 phase shifts of Longuet-Higgins and Darboux
through studies of the quantum mechanics corresponding
to classical chaos, where degeneracies play a useful part.
In retrospect it now appears natural that the generaliza-
tion to the full geometric "phase that launched a thousand
scripts" should have been made in my department at
Bristol. The reason is that in Bristol there had been
several discoveries, over the years, of interesting physics
associated with quantities that fail to return after being
taken round circuits—that is, anholonomy. I have fol-
lowed that intellectual thread elsewhere,21 and here
simply list some of those contributions: the descriptions by
F. Charles Frank of crystal dislocations (1951) and liquid
crystal disclinations (1958) in terms of anholonomy; the
description of the n-phase for molecular electrons (1958) by
Pryce, one of Longuet-Higgins's coauthors and head of the
Bristol physics department; and the discovery by Yakir
Aharonov and David Bohm of the electron phase shift in a
circuit of a magnetic flux line (1959).
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1 Anholonomy in geometry
Before introducing the Berry phase, we review the elegant mathematical framework behind it.
It helps explaining why the Berry phase is often also called the geometric phase.

1.1 Parallel transport and anholonomy angle
Consider a two-dimensional curved surface embedded in a three dimensional Euclidean space.
At each point x = (x1, x2) on the surface, there is a vector space Tx formed by the tangent
vectors at that point. For an ant living on the surface, is it possible to judge if two vectors at
different locations (1 and 2) of the surface are nearly parallel or far from it?
One possible way to calibrate the difference between two vectors at different locations is as
follows: Starting from point 1, the ant can carry the vector around in such a way that it makes
a fixed relative angle with the tangent vector along a path between 1 and 2 (see Fig. 1a). Such
a vector is said to be parallel transported. One can then compare the vector already at point 2
with the parallel transported vector for difference.
Notice that, if we follow this rule, then “being parallel” is a path-dependent concept. That is,
one cannot have a global definition of “being parallel” on the curved surface. The other way to
say the same thing is that, if you parallel transport a vector along a closed loop on the surface,
then the final vector vf is generically different from the initial vector vi (see Fig. 1b).
The angle between these two vectors is called the anholonomy angle (or defect angle). Such
an angle is an indication of how curved the surface is. One can use it to define the intrinsic
curvature of the surface. For example, for a sphere with radius R, the defect angle α for a
vector transported around a spherical triangle is equal to the solid angle Ω subtended by this
triangle,

α = Ω =
A

R2
, (1)

where A is the area enclosed by the triangle.
One can define the curvature at point x as the ratio between α and A for an infinitesimally
closed loop around x. According to this definition, the sphere has a constant curvature 1/R2

everywhere on the surface.
You can apply the same definition to find out the intrinsic curvature of a cylinder. The result
would be zero. That is, the cylinder has no intrinsic curvature. That is why we can cut it open
and lay it down on top of a desk easily without stretching.

1.2 Moving frame and curvature
In practice, apart from a few simple curved surfaces, it is not easy to determine the curvature
without using algebraic tools. At this point, it helps introducing the method of the moving
frame. We follow a very nice article by M. Berry (see Berry’s introductory article in Ref. [1])
and apply this method to calculate the curvature.
Instead of moving a vector, one now moves an orthonormal frame (a triad) along a path C
between two points. At the starting point, the triad is (r̂, ê1, ê2), where r̂ is the unit vector along
the normal direction and (ê1, ê2) is an orthonormal basis of the tangent vector space Tx.
As a rule of parallel transport, we require that, when moving along C, the triad should not twist
around r̂. That is, if ω is the angular velocity of the triad, then

ω · r̂ = 0. (2)
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Fig. 1: (a) Parallel transport of a vector from 1 to 2. It offers a way to compare v1 and v2 on a
curved surface. (b) A vector is parallel transported around a closed path. When the surface is
curved, the final vector would point to a different direction from the initial vector. The angle of
difference α is called the anholonomy angle.

Using the identity ˙̂e1 = ω × ê1 it follows from this requirement that ˙̂e1 · ê2 = 0:

ω · r̂ = ω · ê1 × ê2

= ω × ê1 · ê2 = ˙̂e1 · ê2 = 0. (3)

Likewise also the relation ˙̂e2 · ê1 = 0 is shown easily.
To make further analogy with the complex quantum phase in the next section, let us introduce
the following complex vector,

ψ =
1√
2

(ê1 + iê2) . (4)

Then the parallel transport condition can be rephrased as,

Im
(

ψ∗ · ψ̇
)

= 0, or iψ∗ · ψ̇ = 0. (5)

Notice that the real part of ψ∗ · ψ̇ is always zero since ê1 · ê1 and ê2 · ê2 are time independent.
Instead of the moving triad, we could also erect a fixed triad, (r̂, û, v̂), at each point of the
surface and introduce

n =
1√
2

(û + iv̂) . (6)

Assuming these two triads differ by an angle α(x) (around the r̂-axis), then ψ(x) = n(x)e−iα(x).
It follows that

ψ∗ · dψ = n∗ · dn − idα. (7)

Because of the parallel transport condition in Eq. (5), one has dα = −in∗ ·dn. Finally, the twist
angle accumulated by the moving triad after completing a closed loop C is,

α(C) = −i

∮

C

n∗ ·
dn

dx
dx, (8)

where we have changed the variable of integration to the coordinate on the surface. Therefore,
the defect angle can be calculated conveniently using the fixed-triad basis.
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With the help of the Stokes theorem, one can transform the line integral to a surface integral,

α(C) =

∫

S

1

i

(

dn∗

dx1
·

dn

dx2
−

dn∗

dx2
·

dn

dx1

)

dx1dx2, (9)

where S is the area enclosed by C. In the case of the sphere, one can choose (x1, x2) to be
the spherical coordinates (θ,φ), and choose û and v̂ to be the unit vectors θ̂ and φ̂ in spherical
coordinates. That is, û = (cos θ cosφ, cos θ sin φ,− sin θ) and v̂ = (− sin φ, cosφ, 0). It is not
difficult to show that the integrand in Eq. (9) is sin θdθdφ. Therefore, α(C) is indeed the solid
angle of the area S.
The integral in Eq. (9) over the whole sphere (the total curvature) is equal to its solid angle,
4π. In fact, any closed surface that has the same topology as a sphere would have the same
total curvature 2π × 2. The value of 2 (Euler characteristic) can thus be regarded as a number
characterizing the topology of sphere-like surfaces. In general, for a closed surface with g holes,
the Euler characteristic is 2 − 2g. For example, the total curvature of a donut (g = 1) is 0. This
is the beautiful Gauss-Bonnet theorem in differential geometry.

2 Anholonomy in quantum mechanics
Similar to the parallel transported vector on a curved surface, the phase of a quantum state (not
including the dynamical phase) may not return to its original value after a cyclic evolution in
parameter space. This fact was first exposed clearly by Michael Berry [3] in his 1984 paper. In
this section, we introduce the basic concept of the Berry phase, in later sections we will move
on to examples of the Berry phase in condensed matter.

2.1 Introducing the Berry phase
Let us start from a time-independent system described by a HamiltonianH(r,p). We denote the
eigenstates by |m⟩ and the eigenvalues by ϵm. For simplicity, the energy levels are assumed to be
non-degenerate. An initial state |ψ0⟩ =

∑

am|m⟩ evolves to a state |ψt⟩ =
∑

ame−i/!ϵmt|m⟩
at time t. The probability of finding a particle in a particular level remains unchanged, even
though each level acquires a different dynamical phase e−i/!ϵmt. In particular, if one starts with
an eigenstate of the Hamiltonian, |ψ0⟩ = |n⟩, with am = δm,n, then the probability amplitude
does not “leak” to other states.
Let us now consider a slightly more complicated system with two sets of dynamical variables
H(r,p;R,P). The characteristic time scale of the upper-case set is assumed to be much longer
than that of the lower-case set. For example, the system can be a diatomic molecule H+

2 . The
electron and nuclei positions are represented by r and R respectively. Because of its larger
mass, the nuclei move more slowly (roughly by a thousand times) compared to the electron. In
the spirit of the Born-Oppenheimer approximation, one can first treat R as a time-dependent
parameter, instead of a dynamical variable, and study the system at each “snapshot” of the
evolution. The kinetic part of the slow variable is ignored for now.
Since the characteristic frequency of the nuclei is much smaller than the electron frequency, an
electron initially in an electronic state |n⟩ remains essentially in that state after time t,

|ψt⟩ = eiγn(R)e−i/!
R t
0

dtϵn(Rt)|n;R⟩. (10)
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Table 1: Anholonomies in geometry and quantum state

geometry quantum state
fixed basis n(x) |n;R⟩
moving basis ψ(x) |ψ;R⟩

parallel-transport condition iψ∗ · ψ̇ = 0 i⟨ψ|ψ̇⟩ = 0
anholonomy anholonomy angle Berry phase

classification of topology Euler characteristic Chern number

Apart from the dynamical phase, one is allowed to add an extra phase eiγn(R) for each snapshot
state. Such a phase is usually removable by readjusting the phase of the basis |n;R⟩ [2]. In
1984, almost six decades after the birth of quantum mechanics, Berry [3] pointed out that this
phase, like the vector in the previous section, may not return to its original value after a cyclic
evolution. Therefore, it is not always removable.
To determine this phase, one substitutes Eq. (10) into the time-dependent Schrödinger equation.
It is not difficult to get an equation for γn(t),

γ̇n(t) = i⟨n|ṅ⟩. (11)

Therefore, after a cyclic evolution, one has

γn(C) = i

∮

C

⟨n|
∂n

∂R
⟩ · dR =

∮

C

A · dR, (12)

where C is a closed path in the R-space. The integrand A(R) ≡ i⟨n| ∂n
∂R

⟩ is often called the
Berry connection.
If the parameter space is two dimensional, then one can use Stokes’ theorem to transform the
line integral to a surface integral,

γn(C) = i

∫

S

⟨
∂n

∂R
|× |

∂n

∂R
⟩ · d2R =

∫

S

F · d2R. (13)

The integrand F(R) ≡ ∇R × A(R) is usually called the Berry curvature. For parameter
spaces with higher dimensions, such a transformation can still be done using the language of
the differential form.
By now, the analogy between Eqs. (8,9) and Eqs. (12,13) should be clear. Notice that |n⟩ is a
normalized basis with ⟨n|n⟩ = 1. Therefore, ⟨n|ṅ⟩ should be purely imaginary and i⟨n|ṅ⟩ is a
real number. The basis state |n⟩ plays the role of the fixed triad n in the previous subsection.
Both are single-valued. On the other hand, the parallel transported state |ψ⟩ and the moving
triad ψ are not single-valued.
A point-by-point re-assignment of the phase of the basis state, |n;R⟩′ = eig(R)|n;R⟩, changes
the Berry connection,

A′ = A−
∂g

∂R
. (14)

However, the Berry curvature F and the Berry phase are not changed. This is similar to the
gauge transformation in electromagnetism: one can choose different gauges for the potentials,
but the fields are not changed. Such an analogy will be explored further in the next subsection.
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Fig. 2: A long solenoid hinged at the origin is slowly rotating around the z-axis. At each instant,
the spin at the origin aligns with the uniform magnetic field inside the solenoid.

A short note: It is possible to rephrase the anholonomy of the quantum state using the mathemat-
ical theory of fiber bundles, which deals with geometrical spaces that can locally be decomposed
into a product space (the “fiber” space times the “base” space), but globally show nontrivial
topology. The Möbius band is the simplest example of such a geometric object: Locally it is a
product of two one-dimensional spaces but globally it is not (because of the twisting). In our
case, the fiber is the space of the quantum phase γ(R) and the base is the space ofR. The con-
cept of the parallel transport, the connection, and the curvature all can be rephrased rigorously
in the language of fiber bundles [4]. Furthermore, there is also a topological number (similar to
the Euler characteristic) for the fiber bundle, which is called the Chern number.
The analogy between geometric anholonomy and quantum anholonomy is summarized in Ta-
ble 1.

2.2 A rotating solenoid
To illustrate the concept of the Berry phase, we study a simple system with both slow and fast
degrees of freedom. Following M. Stone [5], we consider a rotating (long) solenoid with an
electron spin at its center. The solenoid is tilted with a fixed angle θ and is slowly gyrating
around the z-axis (see Fig. 2). Therefore, the electron spin feels a uniform magnetic field that
changes direction gradually. This example is a slight generalization of the spin-in-magnetic-
field example given by Berry in his 1984 paper. The Hamiltonian of this spin-in-solenoid system
is,

H =
L2

2I
+ µBσ · B, (15)

where L and I are the angular momentum and the moment of inertia of the solenoid, respec-
tively, and the Bohr magneton is µB = e!/2mc.
The magnetic fieldB along the direction of the solenoid is our time-dependent parameterR. In
the quasi-static limit, the rotation energy of the solenoid is neglected. When the solenoid rotates
to the angle (θ,φ), the spin eigenstates are

|+; B̂⟩ =

(

cos θ
2

eiφ sin θ
2

)

, |−; B̂⟩ =

(

−e−iφ sin θ
2

cos θ
2

)

. (16)
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Table 2: Analogy between electromagnetism and quantum anholonomy

Electromagnetism quantum anholonomy
vector potentialA(r) Berry connectionA(R)

magnetic field B(r) Berry curvature F(R)
magnetic monopole point degeneracy
magnetic flux Φ(C) Berry phase γ(C)

These states can be obtained, for example, from the spin-up (-down) states |±⟩ by a rotation
e−iσ·θ̂(θ/2), in which the rotation axis θ̂ = (− sinφ, cosφ, 0) is perpendicular to both ẑ and B̂.
Using the definitions of the Berry connection and the Berry curvature in Eqs. (12) and (13), one
obtains

A± = ∓
1

2

1 − cos θ

B sin θ
φ̂ (17)

F± = ∓
1

2

B̂

B2
. (18)

They have the same mathematical structure as the vector potential and the magnetic field of a
magnetic monopole. The location of the “monopole” is at the origin of the parameter space,
where a point degeneracy occurs. The strength of the monopole (1/2) equals the value of the
spin (this is true for larger spins also). That is why the Berry connection and the Berry curvature
are sometimes called the Berry potential and the Berry field. In this picture, the Berry phase is
equal to the flux of the Berry field passing through a loop C in parameter space. It is easy to
see that,

γ±(C) = ∓
1

2
Ω(C), (19)

where Ω(C) is the solid angle subtended by loop C with respect to the origin. The similarity
between the theory of Berry phase and electromagnetism is summarized in Table 2.
The Berry phase of the fast motion is only half of the story. When the quantum state of the fast
variable acquires a Berry phase, there will be an interesting “back action” to the slow motion.
For example, for the rotating solenoid, the wave function of the whole system can be expanded
as

|Ψ⟩ =
∑

n=±

ψn(R)|n;R⟩, (20)

in which ψn(R) describes the slow quantum state. From the Schrödinger equation, H|Ψ⟩ =
E|Ψ⟩, one can show that,

[

!2

2I sin2 θ

(

1

i

d

dφ
− An

)2

+ ϵn

]

ψn = Eψn, (21)

where ϵn is the eigen-energy for the fast degree of freedom, and An ≡ i⟨n;R| d
dφ |n;R⟩. The

off-diagonal coupling between |+⟩ and |−⟩ has been ignored. Therefore, the effective Hamil-
tonian for the slow variable acquires a Berry potential An(R). Such a potential could shift
the spectrum and results in a force (proportional to the Berry curvature) upon the slow motion,
much like the effect of vector potentialA(r) and magnetic field on a charged particle.
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Fig. 3: (a) A metal ring in a non-uniform magnetic field. The spin of the electron that is circling
the ring would align with the magnetic field and trace out a solid angle in its own reference
frame. (b) A ferromagnetic ring in a non-uniform magnetic field. The spins on the ring are bent
outward because of the magnetic field.

3 Berry phase and spin systems
A natural place to find the Berry phase is in spin systems. Numerous researches related to this
subject can be found in the literature [6]. Here we only mention two examples, one is related
to the persistent spin current in a mesoscopic ring, the other relates to quantum tunneling in a
magnetic cluster.

3.1 Persistent spin current
We know that an electron moving in a periodic system feels no resistance. The electric resis-
tance is a result of incoherent scatterings from impurities and phonons. If one fabricates a clean
one-dimensional wire, wraps it around to form a ring, and lowers the temperature to reduce the
phonon scattering, then the electron inside feels like living in a periodic lattice without electric
resistance.
For such a design to work, two ingredients are essential: First, the electron has to remain phase
coherent (at least partially) after one revolution. Therefore, a mesoscopic ring at very low tem-
perature is usually required. Second, to have a traveling wave, there has to be a phase advance
(or lag) after one revolution. This can be achieved by threading a magnetic flux φ through the
ring, so that the electron acquires an Aharonov-Bohm (AB) phase (e/!)φ = 2π(φ/φ0) after
one cycle, where φ0 is the flux quantum h/e. When this does happen, it is possible to observe
the resulting persistent charge current in the mesoscopic ring.
Soon after this fascinating phenomenon was observed [7], it was proposed that, in addition to
the AB phase, a spinful electron can (with proper design) acquire a Berry phase after one cycle,
and this can result in a persistent spin current [8]. The design is as follows: Instead of a uniform
magnetic field, a textured magnetic field is used, so that during one revolution, the electron spin
follows the direction of the field and traces out a non-zero solid angleΩ (see Fig. 3a). According
to Eq. (19), this gives rise to a spin-dependent Berry phase γσ(C) = −(σ/2)Ω, where σ = ±.
After combining this with the (spin-independent) AB phase, spin-up and spin-down electrons
have different phase shifts, generating different amounts of persistent particle current I+, I−.
Therefore, a spin current defined as Is = (!/2)(I+ − I−) is not zero.
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Fig. 4: Persistent spin current as a function of the solid angle. At non-zero temperature, the
sharp edges of the sawtooth become smooth.

To illustrate the physics just mentioned, consider a ring that allows only angular motion. Before
applying the magnetic flux, the electron with wave vector k picks up a phase kL from circling
the ring, where L = 2πR and R is the radius of the ring. Because of the periodic boundary
condition, one has kL = 2πn (n ∈ Z). After adding the AB phase and the Berry phase, it
becomes kL = 2πn + 2π(φ/φ0) − σ(Ω/2). Therefore, the energy of an electron in the n-th
mode is

ϵnσ =
!2k2

2m
+ µBBσ =

!2

2mR2

(

n +
φ

φ0
− σ

φΩ

φ0

)2

+ µBBσ, (22)

where φΩ/φ0 ≡ Ω/4π.
The spin current can be calculated from

Is =
1

L

∑

n,σ

(

!

2
σ

)

∂ϵnσ

!∂k
Pnσ, (23)

where Pnσ = exp(−ϵnσ/kBT )/Z is the probability of the electron in the (n, σ)-state, and Z =
∑

n,σ e−ϵnσ/kBT . For a particular k and φ, the current can also be written as

Is = −
∑

n,σ

∂ϵnσ

∂Ω
Pnσ. (24)

To get a rough understanding, we consider the simplest case, where the n = 1mode is populated
with equal numbers of spin-up and -down electrons (if the Zeeman splitting is negligible). The
higher modes are all empty at low enough temperature. In this case, the spin current Is =
−(!2/4πmR2)(Ω/4π) is proportional to the solid angle of the textured magnetic field (see
Fig. 4). At higher temperature, the sawtooth curve will become smooth.
The mesoscopic ring considered above is a metal ring with moving electrons that carry the spins
with them. A different type of spin current has also been proposed in a ferromagnetic ring with
no moving charges [9]. Again the ring is subject to a textured magnetic field, such that when
one moves round the ring, one sees a changing spin vector that traces out a solid angle Ω (see
Fig. 3b). As a result, the spin wave picks up a Berry phase when traveling around the ring,
resulting in a persistent spin current. So far neither type of persistent spin current has been
observed experimentally.
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3.2 Magnetic cluster
Berry phase plays a dramatic role in the quantum tunneling of nano-sized magnetic clusters.
The tunneling between two degenerate spin states of the cluster depends on whether the total
spin of the particle is an integer or a half-integer. In the latter case, the tunneling is completely
suppressed because different tunneling paths interfere destructively as a result of the Berry
phase [10].
Consider a single-domain ferromagnetic particle without itinerant spin. Its total spin J can be
of order ten or larger, as long as tunneling is still possible. Assume that the particle lives in an
anisotropic environment with the Hamiltonian,

H = −k1
J2

z

J2
+ k2

(

J2
x

J2
−

J2
y

J2

)

, (k1 > k2). (25)

That is, the easy axis is along the z-axis and the easy plane is the yz-plane. The cluster is in
the ground state when the spin points to the north pole or to the south pole of the Bloch sphere.
Even though these two degenerate states are separated by a barrier, the particle can switch its
direction of spin via quantum tunneling.
To study the Berry phase effect on the tunneling probability, the best tool is the method of path
integrals. In the following, we give a brief sketch of its formulation.
The fully polarized spin state |n̂, J⟩ along a direction n̂ with spherical angles (θ,φ) can be
written as,

|n̂, J⟩ = |n̂, +⟩ ⊗ |n̂, +⟩ · · ·⊗ |n̂, +⟩

=
2J
∏

l=1

e−i θ
2
σl·θ̂|ẑ, +⟩l, (26)

where |n̂, +⟩ is the spin-1/2 “up” state along the n̂-axis and θ̂ is a unit vector along the ẑ× n̂ di-
rection. Such a so-called spin coherent state can be used to “resolve” the identity operator [11],

I =
2J + 1

4π

∫

dΩ|n̂⟩⟨n̂|, (27)

where |n̂⟩ is an abbreviation of |n̂, J⟩.
In order to calculate the transition probability amplitude ⟨n̂f | exp[−(i/!)HT ]|n̂i⟩, one first di-
vides the time evolution into steps, exp(−i/!HT ) = [exp(−i/!Hdt)]N , dt = T/N , then insert
the resolution of identity in Eq. (27) between neighboring steps. The transition amplitude then
becomes a product of factors with the following form,

⟨n̂(t + dt)|e−
i
!
Hdt|n̂(t)⟩ ≃ ⟨n̂(t + dt)|n̂(t)⟩ −

i

!
⟨n̂(t + dt)|H(J)|n̂(t)⟩dt

≃ 1 − ⟨n̂| ˙̂n⟩dt −
i

!
H(Jn̂)dt. (28)

In the final step, we have replaced the quantum Hamiltonian by a classical Hamiltonian. That
is, ⟨H(J)⟩ = H(⟨J⟩). This holds exactly if the Hamiltonian is linear in J, but is only an
approximation in general. The correction due to the non-commutativity of the spin operator is
roughly of the fraction 1/J and can be ignored for large spins.
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Fig. 5: According to the Hamiltonian in Eq. (25), the z-axis and the x-axis are the easy axis and
the hard axis, respectively. There are two (degenerate) ground states at the north pole and the
south pole of the Bloch sphere. Tunneling from one ground state to the other follows the dashed
line on the y − z plane. Applying a magnetic field along the x-direction moves the locations of
the ground states and shrinks the tunneling path to a smaller loop.

Finally, by summing over paths in the n̂-space, one has

⟨n̂f |e−
i
!
HT |n̂i⟩ =

∫

[Dn̂] exp

{

i

!

∫ tf

ti

[

i!⟨n̂| ˙̂n⟩ − H(Jn̂)
]

dt

}

. (29)

Notice that the first integral in the exponent generates a Berry phase for a path (see Eq. (12)). In
the semiclassical regime, the functional integral in Eq. (29) is dominated by the classical path
n̂c with least action, which is determined from the dynamical equation of n̂ (see below). During
tunneling, the paths under the barrier are classically inaccessible and n̂ becomes an imaginary
vector. It is customary to sacrifice the reality of time t to keep n̂ real. The good news is that the
final result does not depend on which imaginary world you choose to live in.
Define τ = it, then the transition amplitude dominated by the classical action is,

⟨n̂f |e−
i
!

HT |n̂i⟩ ∝ ei
R f

i
A·dn̂ce−1/!

R f
i

H(Jn̂c)dτ , (30)

where A = i⟨n̂|∇n̂⟩ is the Berry potential. The integral of the Berry potential is gauge depen-
dent if the path is open. It is well defined for a closed loop, such as the classical path on the
yz-plane in Fig. 5. The Berry phase for such a loop is 2πJ since it encloses an area with solid
angle 2π (Cf. Eq. (19)). This is also the phase difference between the two classical paths from
the north pole to the south pole. Therefore,

⟨−ẑ|e−
i
!
HT |ẑ⟩ ∝ cos(πJ)e−1/!

R f
i

H(Jn̂c)dτ . (31)

When J is a half integer, the transition process is completely suppressed because of the Berry
phase. The conclusion remains valid if one considers classical paths with higher winding num-
bers [10].
As a reference, we also write down the equation of motion for n̂c that is determined from the
classical action in Eq. (30),

J
dn̂

dt
= n̂ ×

∂H(Jn̂)

∂n̂
. (32)
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Fig. 6: An one-dimensional solid with infinite length. Different choices of the unit cell give
different electric polarization vectors ((a), (b)). On the other hand, the change of polarization
does not depend on the choice of the unit cell (c).

This is the Bloch equation for spin precession, in which ∂H/∂n̂ plays the role of an effective
magnetic field.
One comment is in order: One can apply a magnetic field along the x-axis that shifts the energy
minima along that direction and shrinks the classical loop (see Fig. 5). In an increasingly
stronger field, the size of the loop C eventually would shrink to zero. That is, the Berry phase
γC would decrease from the maximum value of 2πJ to zero. During the process, one expects
to encounter the no-tunneling situation several times whenever γC/2π hits a half-integer. Such
a dramatic Berry phase effect has been observed [12].

4 Berry phase and Bloch state
In the second half of this article, we focus on the Berry phase in periodic solids. It has been play-
ing an ever more important role in recent years due to several discoveries and “re-discoveries”,
in which the Berry phase either plays a crucial role or offers a fresh perspective.

4.1 Electric polarization
It may come as a surprise to some people that the electric polarization P of an infinite periodic
solid (or a solid with periodic boundary conditions) is generically not well defined. The reason
is that, in a periodic solid, the electric polarization depends on your choice of the unit cell
(see Fig. 6a,b). The theory of electric polarization in conventional textbooks applies only to
solids consisting of well localized charges, such as ionic or molecular solids (Clausius-Mossotti
theory). It fails, for example, in a covalent solid with bond charges such that no natural unit cell
can be defined.
A crucial observation made by R. Resta [13] is that, even though the value of P may be am-
biguous, its change is well defined (see Fig. 6c). It was later pointed out by King-Smith and
Vanderbilt [14] that ∆P has a deep connection with the Berry phase of the electronic states.
The outline of their theory below is based on one-particle states. However, the same scheme
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applies to real solids with electronic interactions, as long as one replaces the one-particle states
by the Kohn-Sham orbitals in the density functional theory.
We will use λ to label the degree of ion displacement. It varies from 0 to 1 as the ions shift
adiabatically from an initial state to a final state. The difference of polarizations between these
two states is given by

∫ 1

0 dλdP/dλ, where

P(λ) =
q

V

∑

i

⟨φi|r|φi⟩. (33)

The summation runs over filled Bloch states φi (with λ-dependence) and V is the volume of
the material. For an infinite crystal, the expectation value of r is ill-defined. Therefore, we
consider a finite system at first, and let V → ∞ when the mathematical expression becomes
well-defined.
The Bloch states are solutions of the Schrödinger equation,

Hλ|φi⟩ =

(

p2

2m
+ Vλ

)

|φi⟩ = ϵi|φi⟩, (34)

where Vλ is the crystal potential. From Eq. (34), it is not difficult to show that, for j ̸= i, one
has

(ϵi − ϵj) ⟨φj|
∂φi

∂λ
⟩ = ⟨φj|

∂Vλ

∂λ
|φi⟩. (35)

Therefore,
dP

dλ
=

q

V

∑

i

∑

j ̸=i

[

⟨φi|r|φj⟩
⟨φj|V ′

λ|φi⟩
ϵi − ϵj

+ H.c.

]

. (36)

There is a standard procedure to convert the matrix elements of r to those of p: Start with the
commutation relation, [r, Hλ] = i!p/m, and sandwich it between the i-state and the j-state
(again j ̸= i), we can get an useful identity,

⟨φi|r|φj⟩ =
i!

m

⟨φi|p|φj⟩
ϵj − ϵi

. (37)

With the help of this identity, Eq. (36) becomes the following expression derived by Resta [13],

dP

dλ
=

q!

imV

∑

i

∑

j ̸=i

[

⟨φi|p|φj⟩⟨φj|V ′
λ|φi⟩

(ϵi − ϵj)2
− H.c.

]

. (38)

Now all of the matrix elements are well-defined and the volume V can be made infinite. After
integrating with respect to λ, the resulting∆P is free of ambiguity, even for an infinite covalent
solid.
For Bloch states, the subscripts are i = (m,k) and j = (n,k), wherem, n are the band indices
and k is the Bloch momentum defined in the first Brillouin zone. Eq. (38) can be transformed to
a very elegant form, revealing its connection with the Berry curvature [14]. One first defines a
k-dependent Hamiltonian, H̃ = e−ik·rHeik·r. It is the Hamiltonian of the cell-periodic function
unk. That is, H̃|unk⟩ = ϵnk|unk⟩, where φnk = eik·runk. It is then straightforward to show that,

⟨φmk|p|φnk⟩ =
m

!
⟨umk|

[

∂

∂k
, H̃

]

|unk⟩ =
m

!
(ϵnk − ϵmk)⟨umk|

∂unk

∂k
⟩. (39)
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With the help of this equation and another one very similar to Eq. (35) (just replace the φi’s by
the ui’s), we finally get (α = x, y, z)

dPα

dλ
= −

iq

V

∑

nk

(〈

∂unk

∂kα
|
∂unk

∂λ

〉

−
〈

∂unk

∂λ
|
∂unk

∂kα

〉)

= −
q

V

∑

nk

Ωn
kαλ(k), (40)

where Ωn
kαλ ≡ i

(

⟨ ∂u
∂kα

|∂u
∂λ⟩ − c.c.

)

is the Berry curvature for the n-th band in the parameter
space of kα and λ (Cf. Eq. (13)).
Let us take a one-dimensional system as an example. Assuming the lattice constant is a. Then
the difference of polarization is (q = −e),

∆P =
e

2π

∑

n

∫ 2π/a

0

dk

∫ 1

0

dλΩn
kλ. (41)

The area of integration is a rectangle with lengths 1 and 2π/a on each side. The area integral
can be converted to a line integral around the boundary of the rectangle, which gives the Berry
phase γn of such a loop. Therefore,

∆P = e
∑

n

γn

2π
. (42)

In the special case where the final state of the deformation V1 is the same as the initial state V0,
the Berry phase γn can only be integer multiples of 2π [14]. Therefore, the polarization P for a
crystal state is uncertain by an integer charge Q.
One the other hand, this integer chargeQ does carry a physical meaning when it is the difference
∆P between two controlled states. For example, when the lattice potential is shifted by one
lattice constant to the right, this Q is equivalent to the total charge being transported. Based
on such a principle, it is possible to design a quantum charge pump using a time-dependent
potential [15].

4.2 Quantum Hall effect
The quantum Hall effect (QHE) has been discovered by K. von Klitzing et al. [16] in a two-
dimensional electron gas (2DEG) at low temperature and strong magnetic field. Under such
conditions, the Hall conductivity σH develops plateaus in the σH(B) plot. For the integer QHE,
these plateaus always locate at integer multiples of e2/h to great precision, irrespective of the
samples being used. Such a behavior is reminiscent of macroscopic quantum phenomena, such
as the flux quantization in a superconductor ring.
To explain the integer QHE, Laughlin wraps the sheet of the 2DEG to a cylinder to simulate
the superconductor ring, and studies the response of the current with respect to a (fictitious)
magnetic flux through the cylinder (see Fig. 7). He found that, as the flux increases by one
flux quantum h/e, integer charges Q = ne are transported from one edge of the cylinder to
the other [17]. This charge transport in the transverse direction gives the Hall current, and the
integer n can be identified with the integer of the Hall conductance ne2/h [18].
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Fig. 7: In Laughlin’s argument, the 2DEG is on the surface of a cylinder. The real magnetic
field B now points radially outward. In addition, there is a fictitious flux threading through the
cylinder. When the fictitious flux changes by one flux quantum, integer number of electrons are
be transported from one edge of the cylinder to the other.

Soon afterwards, Thouless et al. (TKNdN) [19] found that the Hall conductivity is closely
related to the Berry curvature (not yet discovered by Berry at that time) of the Bloch state. We
now briefly review the TKNdN theory.
Consider a 2DEG subject to a perpendicular magnetic field and a weak in-plane electric field.
In order not to break the periodicity of the scalar potential, we choose a time-dependent gauge
for the electric field. That is, E = −∂AE/∂t, AE = −Et. The Hamiltonian is,

H =
(π − eEt)2

2m
+ VL(r), (43)

where π = p+ eA0 has included the vector potential of the magnetic field, and VL is the lattice
potential. Similar to the formulation the in previous subsection, it is convenient to use the k-
dependent Hamiltonian H̃ and the cell-periodic function unk in our discussion. They are related
by H̃|unk⟩ = Enk|unk⟩.
We will assume that the system can be solved with known eigenvalues and eigenstates, H̃0|u(0)

nk⟩ =

E(0)
nk |u

(0)
nk⟩ in the absence of an external electric field [20]. The electric field is then treated as a

perturbation. To the first-order perturbation, one has

|unk(t)⟩ = |n⟩ − i!
∑

n′ ̸=n

|n′⟩⟨n′| ∂
∂t |n⟩

ϵn − ϵn′

, (44)

where k(t) = k0 − eEt/!, and |n⟩ and ϵn are abbreviations of |u(0)
nk(t)⟩ and E(0)

nk(t).
The velocity of a particle in the n-th band is given by vn(k) = ⟨unk|∂H̃/!∂k|unk⟩. After
substituting the states in Eq. (44), we find

vn(k) =
∂ϵn
!∂k

− i
∑

n′ ̸=n

(

⟨n|∂H̃
∂k

|n′⟩⟨n′|∂n
∂t ⟩

ϵn − ϵn′

− c.c.

)

. (45)

The first term is the group velocity in the absence of the electric perturbation. With the help of
an equation similar to Eq. (39),

⟨n|
∂H̃

∂k
|n′⟩ = (ϵn − ϵn′) ⟨

∂n

∂k
|n′⟩, (46)
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one finally gets a neat expression,

vn(k) =
∂ϵn
!∂k

− i

(〈

∂n

∂k
|
∂n

∂t

〉

−
〈

∂n

∂t
|
∂n

∂k

〉)

. (47)

By a change of variable, the second term becomes Ωn × k̇ = −(e/!)Ωn × E, where Ωnα =
iϵαβγ⟨ ∂n

∂kβ
| ∂n
∂kγ

⟩ is the Berry curvature in momentum space.
For a 2DEG, Ωn = Ωnẑ. All states below the Fermi energy contribute to the current density,

j =
1

V

∑

nk

−evn(k) =
e2

!

∑

n

∫

d2k

(2π)2
Ωn(k) × E. (48)

Notice that the first term in Eq. (47) does not contribute to the current. From Eq. (48), it is clear
that the Hall conductivity is given by,

σyx =
e2

h

∑

n

1

2π

∫

d2kΩn(k). (49)

Thouless et al. have shown that the integral of the Berry curvature over the whole BZ di-
vided by 2π must be an integer cn. Such an integer (the Chern number mentioned in Sec. 2.2)
characterizes the topological property of the fiber bundle space, in which the base space is the
two-dimensional BZ, and the fiber is the phase of the Bloch state (see the discussion near the
end of Sec. 2.1). Therefore, the Hall conductivity of a filled band is always an integer multiple
of e2/h. Such a topological property is the reason why the QHE is so robust against disorders
and sample varieties. Even though the discussion here is based on single-particle Bloch states,
the conclusion remains valid for many-body states [21].
Some comments are in order. First, the formulas behind the change of electric polarization∆P

in Sec. 4.1 and those of the quantum Hall conductivity here look very similar. Both are based
on the linear response theory. In fact, the analogy can be carried further if ∆P is considered as
the time integral of a polarization current jP = ∂P/∂t. The latter, similar to the quantum Hall
current in Eq. (48), can be related to the Berry curvature directly.
Second, if a solid is invariant under space inversion, then the cell-periodic state has the symme-
try,

un−k(−r) = unk(r). (50)

On the other hand, if the system has time-reversal symmetry, then

u∗
n−k(r) = unk(r). (51)

As a result, if both symmetries exist, then one can show that the Berry potentialAn = i⟨n|∂n
∂k
⟩

(and therefore the Berry curvature) is zero for all k. The conclusion, however, does not hold if
there is band crossing or spin-orbit interaction (not considered so far).
That is, the Berry potential (or curvature) can be non-zero if (i) the lattice does not have space
inversion symmetry. This applies to the polarization discussed in the previous subsection. (ii)
Time-reversal symmetry is broken, e.g., by a magnetic field. This applies to the quantum Hall
system in this subsection. In the next subsection, we consider a system with spin-orbit interac-
tion, in which the Berry curvature plays an important role.
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Fig. 8: When one increases the magnetic field, the Hall resistivity of a ferromagnetic material
rises quickly. It levels off after the sample is fully magnetized.

4.3 Anomalous Hall effect
Soon after Edwin Hall discovered the effect that bears his name in 1879 (at that time he was
a graduate student at Johns Hopkins university), he made a similar measurement on iron foil
and found a much larger Hall effect. Such a Hall effect in ferromagnetic materials is called the
anomalous Hall effect (AHE).
The Hall resistivity of the AHE can be divided into two terms with very different physics (pro-
posed by Smith and Sears in 1929) [22],

ρH = ρN + ρAH = RN (T )B + RAH(T )µ0M(T, H), (52)

where B = µ0(H + M). The first (normal) term is proportional to the magnetic field in the
sample. The second (anomalous) term grows roughly linearly with the magnetization M and
the coefficient RAH is larger than RN by one order of magnitude or more. If the applied field
is so strong that the material is fully magnetized, then there is no more enhancement from the
anomalous term and the Hall coefficient suddenly drops by orders of magnitude (see Fig. 8).
Since the normal term is usually much smaller than the anomalous term, we will neglect it in
the following discussion.
Unlike the ordinary Hall effect, the Hall resistivity in the AHE increases rapidly with tempera-
ture. However, the Hall conductivity,

σH =
ρH

ρ2
L + ρ2

H

≃
ρH

ρ2
L

(if ρL ≫ ρH), (53)

shows less temperature dependence, where ρL is the longitudinal resistivity. The reason will
become clear later.
Since the AHE is observed in ferromagnetic materials, the magnetization (or the majority spin)
must play a role here. Also, one needs the spin-orbit (SO) interaction to convert the direction of
the magnetization to a preferred direction of the transverse electron motion.
Amongmany attempts to explain the AHE, there are two popular explanations [23], both involve
the SO interaction,

HSO = −
!

4m2c2
σ · (p×∇V ). (54)

The first theory was proposed by Karplus and Luttinger (KL) in 1954 [24]. It requires no
impurity (the intrinsic scenario) and the V in Eq. (54) is the lattice potential. The Hall resistivity
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ρAH is found to be proportional to ρ2
L. The other explanation is proposed by Smit in 1958 [25].

It requires (non-magnetic) impurities (the extrinsic scenario) and V is the impurity potential. It
predicts ρAH ∝ ρL. When both mechanisms exist, one has

ρAH = a(M)ρL + b(M)ρ2
L. (55)

The Smit term is a result of the skewness of the electron-impurity scattering due to the SO
interaction. That is, the spin-up electrons prefer scattering to one side, and the spin-down
electrons to the opposite side. Because of the majority spins of the ferromagnetic state, such
skew-scatterings produce a net transverse current. Smit’s proposal started as an opposition to
KL’s theory and gained popularity in the early years. As a result, the KL scenario seems to have
been ignored for decades.
At the turn of this century, however, several theorists picked up the KL theory and put it under
the new light of the Berry curvature [26]. Subsequently, increasing experimental evidences
indicate that, in several ferromagnetic materials, the KL mechanism does play a much more
important role than the skew-scattering. These works published in renowned journals have
attracted much attention, partly because of the beauty of the Berry curvature scenario.
KL’s theory, in essence, is very similar to the ones in the previous two subsections. One can
first regard the Hamiltonian with the SO interaction as solvable, then treat the electric field as a
perturbation. To the first order of the perturbation, one can get the electron velocity with exactly
the same form as the one in Eq. (47). The difference is that the state |n⟩ now is modified by
the SO interaction and the solid is three dimensional. That is, one simply needs to consider a
periodic solid without impurities and apply the Kubo formula, which (in these cases) can be
written in Berry curvatures,

σAH =
e2

!

1

V

∑

n,k

Ωn(k). (56)

However, not every solid with the SO interaction has the AHE. The transverse velocities (also
called the anomalous velocity) in general have opposite signs for opposite spins in the spin-
degenerate bands. Therefore, these two Hall currents will get canceled. Again the ferromagnetic
state (which spontaneously breaks the time reversal symmetry) is crucial for a net transverse
current.
From Eq. (53), one has ρH ≃ ρAH = σHρ2

L. Also, the anomalous current generated from the
Berry curvature is independent of the relaxation time τ . This explains why the Hall conductivity
in the KL theory is proportional to ρ2

L.
In dilute magnetic semiconductors, one can show thatA(k) = ξS× k for the conduction band
of the host semiconductor, where ξ is the strength of the SO coupling (more details in Sec. 5.2).
Therefore, Ω = ∇ × A = 2ξS. In this case, the coefficient b(M) in Eq. (55) is proportional
to M . In ferromagnetic materials with a more complex band structure, the Berry curvature
shows non-monotonic behavior in magnetization. For one thing, in density-functional-theory
calculations, the Berry curvature can be dramatically enhanced when the Fermi energy is near a
small energy gap [27]. However, spin fluctuations may smear out the erratic behavior and lead
to a smooth variation (see Fig. 9) [28].
The Berry curvature is an intrinsic property of the electronic states. It appears not only at the
quantum level, but also in the semiclassical theory of electron dynamics. In the next section,
we will see that the QHE, the AHE, and the spin Hall effect can all be unified in the same
semiclassical theory.
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(a) (b)

Fig. 9: (a) Calculated anomalous Hall conductivity (the intrinsic part) versus magnetization
for Mn5Ge3 using different relaxation times. (b) After averaging over long-wavelength spin
fluctuations, the calculated anomalous Hall conductivity becomes roughly linear in M . The
initials S.S. refers to skew scattering. The figures are from Ref. [28].

5 Berry phase and wave-packet dynamics
When talking about electron transport in solids, people use two different languages: It is either
particle scattering, mean free path, cyclotron orbit ..., or localized state, mobility edge, Landau
level ... etc. In this section, we use the first language and treat the electrons as particles with
trajectories. Besides being intuitive, this approach has the following advantage: The electro-
magnetic potentials in the Schrödinger equation are often linear in r and diverge with system
size. Such a divergence can be avoided if the wave function of the electron is localized.

5.1 Wave-packet dynamics
Consider an energy band that is isolated from the other bands by finite gaps. Also, the energy
band is not degenerate with respect to spin or quasi-spin. The energy band with internal (e.g.,
spin) degrees of freedom is the subject of the next subsection. When inter-band tunneling can
be neglected, the electron dynamics in this energy band can be described very well using a
wave-packet formalism.
The wave packet can be built by a superposition of Bloch states ψnq in band n (one band
approximation),

|W ⟩ =

∫

BZ

d3qa(q, t)|ψnq⟩. (57)

It is not only localized in position space, but also in momentum space,

⟨W |r|W ⟩ = rc;

∫

BZ

d3qq|a(q)|2 = qc, (58)

where rc and qc are the centers of mass. The shape of the wave packet is not crucial, as long as
the electromagnetic field applied is nearly uniform throughout the wave packet.
Instead of solving the Schrödinger equation, we use the time-dependent variational principle to
study the dynamics of the wave packet. Recall that in the usual (time-independent) variational
principle, one first proposes a sensible wave function with unknown parameters, then minimizes
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its energy to determine these parameters. Here, the wave packet is parametrized by its center
of mass (rc(t),qc(t)). Therefore, instead of minimizing the energy, one needs to extremize the
action S[C] =

∫

C dtL, which is a functional of the trajectory C in phase space.
One starts from the following effective Langrangian,

L(rc,qc; ṙc, q̇c) = i!⟨W |
d

dt
|W ⟩ − ⟨W |H|W ⟩. (59)

Notice the resemblance between this S[C] and the the action in the coherent-state path integral
(Eq. (29)). The Hamiltonian for a Bloch electron in an electromagnetic field is

H =
1

2m
(p + eA)2 + VL(r) − eφ(r) ≃ H0 − eφ+

e

2m
r × p · B, (60)

in which H0 = p2/2m + VL and φ and A = 1
2B × r are treated as perturbations. The fields

are allowed to change slowly in space and time, as long as it is approximately uniform and
quasi-static (adiabatic) from the wave packet’s perspective.
To evaluate the Lagrangian approximately, one can Taylor-expand the potentials with respect to
the center of the wave packet and keep only the linear terms. Using this gradient approximation,
the wave-packet energy ⟨W |H|W ⟩ is evaluated as [29],

E = E0(qc) − eφ(rc) +
e

2m
L(qc) · B, (61)

where E0 is the unperturbed Bloch energy of the band under consideration, and L(kc) =
⟨W |(r− rc) × p|W ⟩ is the self-rotating angular momentum of the wave packet.
On the other hand, the first term in Eq. (59) can be written as

i!⟨W |
d

dt
|W ⟩ = !⟨u|i

du

dt
⟩ + !qc · ṙc, (62)

in which |u⟩ is the unperturbed cell-periodic function. Therefore, the effective Lagrangian is

L = !k̇c · Rc + (!kc − eAc) · ṙc − E(rc,kc), (63)

where !kc = !qc + eAc is the gauge-invariant quasi-momentum, Rc = i⟨n| ∂n
∂kc

⟩ is the Berry
potential, andAc = A(rc).
Treating both rc and kc as generalized coordinates and using the Euler-Lagrange equation, it
is not very difficult to get the following (coupled) equations of motion (EOM) for the wave
packet [29],

!k̇c = −eE − eṙc × B, (64)

!ṙc =
∂E

∂kc
− !k̇c ×Ωc, (65)

where Ωc = ∇kc ×Rc is the Berry curvature of the band under consideration.
Compared to the usual semiclassical EOM in textbooks, there are two new quantities in Eqs. (64,65),
and both lead to important consequences. The first is the Berry curvature Ω. It generates the
so-called anomalous velocity. In the presence of a perturbing electric field, the anomalous ve-
locity is eE × Ω, which is perpendicular to the driving electric field and gives rise to, e.g., the
AHE.
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The second is the spinning angular momentum L in Eq. (61). It is closely related to the orbital
magnetization of a solid [30]. For a spinful wave packet (Sec. 5.2), this L modifies the elec-
tron spin and is the origin of the anomalous g-factor in solids. In fact, starting from Dirac’s
relativistic electron theory (which has no explicit spin in the Hamiltonian), we have shown that,
the wave packet in the positive-energy branch of the Dirac spectrum has an intrinsic spinning
angular momentum [31]. That is, it explains why an electron has spin.
In the semiclassical theory of electron transport, the current density is given by

j = −
e

V

∑

nk

f ṙ, (66)

where f = f0+δf is the distribution function away from equilibrium. The distribution function
f is determined from the Boltzmann equation,

ṙ ·
∂f

∂r
+ k̇ ·

∂f

∂k
= −

δf

τ
, (67)

where τ is the relaxation time. For a homogeneous system in an electric field, δf ≃ τ e
!
E · ∂f0

∂k
,

and
j ≃ −

e

V

∑

nk

(

δf
∂En

!∂k
+ f0

e

!
E ×Ωn

)

. (68)

The usual current (the first term) depends on carrier relaxation time τ through the change of the
distribution function δf . On the other hand, the second term gives the Hall current. Clearly, this
Ω is also the one in the Kubo formula of QHE and AHE. (The latter involves spin-degenerate
band and belongs more properly to the next subsection.)
We emphasize that, just like the Bloch energy E0(k), both Ω(k) and L(k) are intrinsic to the
energy band (not induced by the applied field). They are the three main pillars of band theory.
Unlike the Bloch energy that has been around for a very long time, the other two quantities are
relatively new players, but their importance should increase over time.
If there is only a magnetic field, then combining Eq. (64) and Eq. (65) gives

!k̇c =
− e

!

∂E
∂kc

× B

1 + e
!
B · Ω

. (69)

It describes a cyclotron orbit moving on a plane perpendicular to the magnetic field. The orbit
is an energy contour on the Fermi surface. Its size can change continuously, depending on the
electron’s initial condition.
One can apply a Bohr-Sommerfeld quantization rule to get quantized orbits, which have dis-
crete energies (the Landau levels). The EOM in momentum space, Eq. (69), follows from the
effective Lagrangian,

L(kc; k̇c) =
!2

2eB
kc × k̇c · B̂ + !k̇c · Rc − E(kc). (70)

This gives the generalized momentum,

π =
∂L

∂k̇c

= −
!2

2eB
kc × B̂ + !Rc. (71)
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Fig. 10: The quantized cyclotron orbits on two different energy surfaces. The one on the left is
a paraboloid near its band edge; the one on the right is a conical surface. Without Berry phase
correction, the Landau-level energies are En = (n + 1/2)!ωc and En = vF

√

2eB!(n + 1/2)
respectively. In graphene, an orbit circling the Dirac point acquires a Berry phase of π, which
cancels the 1/2 in the square root.

The quantization condition is given by
∮

π ·dkc = (m+γ)h, wherem is a non-negative integer
and γ = 1/2 for the cyclotron motion. Therefore, we have

B̂

2
·
∮

Cm

(kc × dkc) = 2π

(

m +
1

2
−

Γ(Cm)

2π

)

eB

!
, (72)

where Γ(Cm) =
∮

Cm
Rc · dkc is the Berry phase for orbit Cm.

This equation determines the allowed size (and therefore energy) of the cyclotron orbit. The
Berry phase correction slightly shifts the Landau-level energies. For example, the orbit around
the Dirac point of graphene picks up a Berry phase of π due to the monopole at the origin.
This cancels the other 1/2 in Eq. (72) and results in a zero-energy level at the Dirac point (see
Fig. 10). This agrees nicely with experimental measurements [32].

5.2 Non-Abelian generalization
In the one-band theory without internal degrees of freedom, the Bloch state has only one com-
ponent and the gauge structure of the Berry phase is Abelian. When the band has internal
degrees of freedom (henceforth simply called the spin), the Bloch state has several components
and the gauge structure becomes non-Abelian. This happens, for example, in energy bands with
Kramer’s degeneracy. By extending the semiclassical dynamics to such cases, one is able to
investigate problems involving spin dynamics and spin transport.
The scheme for building such a theory is the same as the one in the previous subsection. There-
fore, we only give a very brief outline below. One first constructs a wave packet from the Bloch
states ψnq,

|W ⟩ =
D
∑

n=1

∫

BZ

d3qa(q, t)ηn(q, t)|ψnq⟩. (73)

Here n is a spinor index for an isolated band with D-fold degeneracy, η = (η1, · · · , ηD)T is a
normalized spinor at each q, and a(q, t) is again a narrow distribution centered at qc(t).
Similar to the non-degenerate case, there are three basic quantities in such a formalism, the
Bloch energyH0(q), the Berry connectionR(q) (and related curvature, now written asF(q)),
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and the spinning angular momentum L(q) [33]. They all become matrix-valued functions and
are denoted by calligraphic fonts. The Bloch energy is simply an identity matrix multiplied by
E0(q) since all spinor states have the same energy.
The matrix elements of the Berry connection are,

Rmn(q) = i

〈

umq|
∂unq

∂q

〉

. (74)

The Berry curvature is given by,

F(q) = ∇q × R − iR × R. (75)

Recall that the Berry connection and Berry curvature in the Abelian case are analogous to the
vector potential and the magnetic field in electromagnetism (see Sec. 2.1). Here, R and F

also are analogous to the gauge potential and gauge field in the non-Abelian SU(2) gauge field
theory [34].
The expectation value of the third basic quantity, the spinning angular momentum, is again
given by L(qc) = ⟨W |(r− rc)×p|W ⟩. However, it is often written in an alternative (Rammal-
Wilkinson) form easier for evaluation,

L(q) = i
m

!

〈

∂u

∂q

∣

∣

∣
×
[

H̃0 − E0(q)
]
∣

∣

∣

∂u

∂q

〉

, (76)

where the cell-periodic function without a subscript is defined as |u⟩ =
∑D

n=1 ηn|un⟩ and H̃0 is
the Hamiltonian for |u⟩. The corresponding matrix-valued function L therefore has the matrix
elements,

Lnl(q) = i
m

!

〈

∂un

∂q

∣

∣

∣
×
[

H̃0 − E0(q)
]
∣

∣

∣

∂ul

∂q

〉

. (77)

Obviously, after taking the spinor average, one has the angular momentum in Eq. (76), L =
⟨L⟩ ≡ η†Lη =

∑

nl η
∗
nLnlηl.

Equations of motion
So far we have laid out the necessary ingredients in the non-Abelian wave packet theory. Similar
to Sec. 5.2, we can use Eq. (59) to get the effective Lagrangian for the center of mass, (rc,kc),
and the spinor η. Afterwards, the Euler-Lagrange equation for this effective Lagrangian leads
to the following EOM [33],

!k̇c = −eE − eṙc × B, (78)

!ṙc =

〈[

D
Dkc

,H
]〉

− !k̇c × F, (79)

i!η̇ =
( e

2m
L · B − !k̇c · R

)

η, (80)

where F = ⟨F⟩, and the covariant derivative D/Dkc ≡ ∂/∂kc − iR. The semiclassical
Hamiltonian inside the commutator in Eq. (79) is

H(rc,kc) = H0(kc) − eφ(rc) +
e

2m
L(kc) · B, (81)

where kc = qc + (e/!)A(rc).
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Even though these equations look a little complicated, the physics is very similar to that of the
simpler Abelian case in Sec. 5.1. There are two differences, however. First, the anomalous
velocity in Eq. (79) is now spin-dependent in general. In some interesting cases (see below), F
is proportional to the spin vector S = ⟨S⟩, where S is the spin matrix. Therefore, if one applies
an electric field to such a system, the spin-up and spin-down electrons will move to opposite
transverse directions. This is the cause of the AHE and the spin Hall effect.
Second, we now have an additional equation (Eq. (80)) governing the spinor dynamics. From
Eq. (80) we can derive the equation for S,

i!Ṡ =
〈[

S,H− !k̇c · R
]〉

. (82)

The spin dynamics in Eq. (82) is influenced by the Zeeman energy in H, as it should be. We
will demonstrate below that the term with the Berry connection is in fact the spin-orbit energy.
Such an energy is not explicit inH, but only reveals itself after H is being re-quantized.

Re-quantization
As we have shown in Sec. 5.1, re-quantization of the semiclassical theory is necessary when
one is interested in, for example, the quantized cyclotron orbits that correspond to the Landau
levels. Here we introduce the method of canonical quantization, which is more appropriate for
the non-Abelian case compared to the Bohr-Sommerfeld method.
In this approach, one needs to find variables with canonical Poisson brackets,

{rα, rβ} = 0,

{pα, pβ} = 0,

{rα, pβ} = δαβ, (83)

then promote these brackets to quantum commutators. As a result, the variables become non-
commutating operators and the classical theory is quantized.
An easier way to judge if the variables are canonical is by checking if they satisfy the canonical
EOM,

ṙ =
∂E

∂p
; ṗ = −

∂E

∂r
. (84)

The variables rc and kc that depict the trajectory of the wave packet are not canonical variables
because their EOM are not of this form. This is due to the vector potential and the Berry
connection,A(rc) and R(kc), in the Lagrangian (see Eq. (63)).
In fact, if one can remove these two gauge potentials from the Lagrangian by a change of
variables,

L = p · ṙ − E(r,p), (85)

then these new variables will automatically be canonical. Such a transformation is in general
non-linear and cannot be implemented easily. However, if one only requires an accuracy to
linear order of the electromagnetic fields (consistent with the limit of our semiclassical theory),
then the new variables can indeed be found.
The canonical variables r and p accurate to linear order in the fields are related to the center-
of-mass variables as follows [35],

rc = r + R(π) + G(π),

!kc = p + eA(r) + eB × R(π), (86)
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where π = p+eA(r), and Gα(π) ≡ (e/!)(R×B) ·∂R/∂πα. The last terms in both equations
can be neglected in some cases. For example, they will not change the force and the velocity in
Eqs. (78) and (79). These relations constitute a generalization of the Peierls substitution.
When expressed in the new variables, the semiclassical Hamiltonian in Eq. (81) becomes,

H(r,p) = H0(π) − eφ(r) + eE · R(π)

+ B ·
[

e

2m
L(π) + eR ×

∂H0

∂π

]

, (87)

where we have used the Taylor expansion and neglected terms nonlinear in the fields. Finally,
one promotes the canonical variables to quantum conjugate variables to convert H to an effec-
tive quantum Hamiltonian.
The dipole-energy term eE ·R is originates from the shift between the charge center rc and the
canonical variable r. We will show below that for a semiconductor electron, the dipole term is
in fact the spin-orbit coupling.
The correction to the Zeeman energy is also related to the Berry connection. Near a band edge,
where the effective mass approximation is applicable and E0 = π2/2m∗, this term can be writ-
ten as eR · v × B, where v = π/m∗. We know that an electron moving in a static magnetic
field feels an effective electric field Eeff = v ×B. Therefore, this term arises as a result of the
electric dipole energy in electron’s own reference frame.

Semiconductor electron
A necessary requirement for the non-Abelian property is that the Bloch electron has to have
internal degrees of freedom. In a semiconductor with both space-inversion and time-reversal
symmetries, every Bloch state is two-fold degenerate due to Kramer’s degeneracy. But where
do we expect to see the non-Abelian Berry connection and curvature?
Instead of the full band structure, one can start from a simpler band structure using the k · p
expansion. Assuming the fundamental gap is located at k = 0, then for small k, one has an
effective Hamiltonian with 4 bands, 6 bands, 8 bands, or more, depending on the truncation.
In the following discussion, we use a 8-band Kane Hamiltonian that includes the conduction
band, the HH-LH bands, and the spin-orbit (SO) split-off band, each with 2-fold degeneracy
(see Fig. 11). The explicit Kane Hamiltonian can be found in Ref. [36].
We focus only on the wave packet in the conduction band. Without going into details, we first
show the Berry connection that is essential to the wave packet formulation. The result correct
to order k1 and up to a gauge rotation is [35],

R =
V 2

3

[

1

E2
g

−
1

(Eg + ∆)2

]

σ × k, (88)

where V = !

m⟨S|p̂x|X⟩, Eg is the energy gap, and ∆ is the SO gap. Therefore, the dipole term
eE · R in Eq. (87) becomes,

Hso = eE · R = αE · σ × k, (89)

where α ≡ (eV 2/3)[1/E2
g −1/(Eg +∆)2]. It coincides precisely with the spin-orbit coupling of

a conduction electron. This shows that the SO coupling has a very interesting connection with
the Berry connection. This is also the case for the SO coupling in Dirac’s relativistic electron
theory [37].
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4-band 
Luttinger
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8-band 
Kane 
model

E(k)

Eg

∆
HH

LH

SO

CB

Fig. 11: One can use the 4-band Luttinger model or the 8-band Kane model to approximate the
energy bands near the fundamental gap.

The Berry curvature calculated from Eq. (75) gives (to the lowest order) F = α/eσ, which is
proportional to spin. Therefore, the anomalous velocity eE × F in Eq. (79) is αE × ⟨σ⟩. That
is, spin-up and spin-down electrons acquire opposite transverse velocities. In non-magnetic
materials, these two species have the same population and we do not expect to see a net trans-
verse current. However, “if” one defines a spin current as the difference of these two transverse
currents, then there will be a net spin current, giving rise to the spin Hall effect [38].
One can also calculate the spinning angular momentum of the conduction electron from Eq. (77).
The result is,

L = −
2mV 2

3!

(

1

Eg
−

1

Eg + ∆

)

σ. (90)

Through the Zeeman energy in Eq. (87), the orbital magnetic moment generated from Eq. (90)
contributes an extra g-factor,

δg = −
4

3

mV 2

!2

(

1

Eg
−

1

Eg + ∆

)

. (91)

This is the anomalous g-factor of the conduction electron [39]. Therefore, the anomalous g-
factor in solid is indeed a result of the self-rotating motion of the electron wave packet.
Finally, the effective quantumHamiltonian in Eq. (87) for the conduction band has the following
form,

H(r,p) = E0(π) − eφ(r) + αE · σ × π +
δg

2
µBB · σ, (92)

where E0 includes the Zeeman energy from the bare spin, α is given below Eq. (89), δg is given
in Eq. (91), and the correction to the Zeeman energy has been neglected. This Hamiltonian
agrees with the one obtained from block diagonalization [36]. The wave packet approach is not
only simpler, but also reveals the deep connections between various effective couplings and the
Berry potential.
Some comments are in order: First, we emphasize again that it is necessary to include the
Berry curvature and orbital moment in order to account for physical effects to first order in
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external fields. Furthermore, from the discussions above, we can see that these quantities are
also sufficient for building a correct quantum theory.
Second, starting from a quantum theory, one can construct a semiclassical theory in a specific
subspace. This theory can later be re-quantized. The re-quantized effective theory applies to a
smaller Hilbert space compared to the original quantum theory. Nevertheless, it can still have
its own semiclassical theory, which in turn can again be re-quantized. As a result, a hierarchy
of effective theories and gauge structures can be produced, all within the wave packet approach
(see Ref. [35] for more discussions).

6 Concluding remarks
In this review, selected topics related to Berry phase in solid state physics are reported. Many
of these topics have been fully developed over the years. The exposition here only serves as
an introduction, without going into details and more recent development. Readers interested
in certain topics can consult some of the following books or review articles: [1] and [40] on
Berry phase in general, [41] and [42] on electric polarization, [43] on quantum Hall effect, [44]
and [45] on anomalous Hall effect, [46] and [47] on dynamics of Bloch electrons, and [35] on
non-Abelian wave packet dynamics.
In optics, the Berry curvature is related to a transverse shift (side jump) of a light beam reflected
off an interface.[48] The shift is roughly the order of the wavelength. Its direction depends
on the circular polarization of the incident beam. This is called the optical Hall effect, or the
Imbert-Federov effect,[49] which is not covered here. The side jump of a light beam is similar to
the analogous “jump” of an electron scattering off an impurity in the anomalous Hall effect [22].
A more detailed study of the optical transport involving spin can be found in Ref. [50].
Several topics not covered here can be found in an upcoming review on Berry phase in solid state
physics [51]. These topics include the orbital magnetization of a solid, dipole moment of the
wave packet, anomalous thermoelectric transport, and inhomogeneous electric polarization. It is
amazing that the Berry phase plays such a versatile role in so many solid-state phenomena. On
the other hand, several challenging subjects still remain largely unexplored. For example, the
effect of the Berry phase in systems in which non-adiabatic processes or many-body interaction
is crucial. Therefore, one can expect to see more of the intriguing Berry phase effects in solid
state systems.
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