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Chapter 13 
 
Distributed Feedback (DFB) 
Structures and Semiconductor DFB 
Lasers 
 
 
13.1 Distributed Feedback (DFB) Gratings in Waveguides 
 
13.1.1 Introduction: 
Periodic structures, like the DBR mirrors in VCSELs, can be also realized in a waveguide, as shown 
below in the case of a InGaAsP/InP waveguide.   

 
 
In the waveguide shown above, periodic grooves have been etched in the top surface of the InGaAsP 
waveguide before the growth of the top InP layer. Such periodic grating structures are examples of 
one dimensional photonic bandgap materials. The relative dielectric constant is a function of the z-
coordinate and can be written as, 
 ),,(),(),,( avg zyxyxzyx    

The average dielectric constant ),(avg yx  corresponds to the waveguide structure shown below in 

which the grating region has been replaced by a layer with a z-averaged dielectric constant.  
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The z-average of the part ),,( zyx  is therefore zero. If the period of the grating is a , then one may 

expend ),,( zyx  in terms of a Fourier series, 

   
0

,),,(
p

ipGz
pedyxfzyx  

where the reciprocal lattice vector (also called the grating vector) G  equals a2 . If ),,( zyx  is 

real then, *
pp dd  .  yxf ,  equals one in the grating region and equals zero everywhere else. In the 

above Fourier series for ),,( zyx , usually the fundamental harmonic dominates and therefore we 

will assume that, 

    iGziGz ededyxfzyx 
 11,),,(  

A wave travelling in the waveguide with a wavevector   can Bragg scatter from the periodic grating 
provided the conditions for Bragg scattering are satisfied, 

    final
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The only way these conditions can be satisfied in one dimension is when  final , i.e. the wave is 
reflected in the opposite direction, 
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So a forward traveling wave will be Bragg reflected if its wavevetor is close to aG 2 . If we call 

this special wavevector o  then aGo   2 . We can write ),,( zyx  as, 

    zizi oo ededyxfzyx  2
1

2
1,),,( 
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13.1.2 Wave propagation in a DFB Grating Waveguide – Coupled Mode Technique: 
One can analyze wave propagation in a DFB grating waveguide in two steps discussed below.  
 
Step 1: 
First consider the waveguide corresponding to ),(avg yx  shown in the Figure above and solve for 

the eigemodes and the propagation vectors (eigenvalues) for all frequencies of interest. The 

eignemodes,   zieyxE ,


 and   zieyxH ,


satisfy Maxwell’s equations, 

 
   
      zi

o
zi

zi
o

zi

eyxEyxieyxH

eyxHieyxE









,,,

,,

avg








 

or, 
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The above equations can be solved to give the mode effective index  effn . Given a grating 

structure, we can now find the frequency o  that will Bragg scatter from the relation, 

    
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n
c ooeff
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o
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
   

If the wavevector   is very different from o  then the grating structure will likely not affect the 

solution much (there will be not much scattering). The interesting case is when o  . This case is 
discussed below. 
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Step 2: 
We treat the part ),,( zyx  as a perturbation. The perturbation will have the strongest affect when 

o  . For o  , we write the solution as, 
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Here, the functions  zA  and  zA  are assumed to be slowly varying in space. The form of the 
solution allows for coupling between the forward and backward going waves because of Bragg 
scattering from the grating. The technique described below is called coupled mode theory. Plugging 
the assumed form of the solution in Maxwell’s equations gives, 
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Using the Maxwell’s equation satisfied by the eigenmode we get, 
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We multiply the first equation above by  yxH ,*


 and multiply the second equation above by 

 yxE ,*


 and then subtract the two equations, and keep only the terms that are approximately phase 
matched to get on left and right hand sides to get, 
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If instead of subtracting, we add the two equations then we obtain, 
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If (and only if) ),,( zyx  is real and *
11 dd  , then the above two equations can be written as, 
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where the coupling constant   is,   

 

   

   
   

    
G

1

*

*

*
region Grating

**

1

2
   

ˆ.,,Re

,.,

,.,

,.,

2



 








g
M
g

M
g

M
g

M
g

M
g

o

vnn

d

dxdyzyxHyxE

dxdyyxEyxEnn

dxdyyxEyxEnn

dxdyyxEyxEnn

nn

d




 







 

Here, M
gnn  is the product of the index and the (material) group index of the grating region, gv  is the 

group velocity of the mode, and the overlap integral G  is the usual mode confinement factor for the 
grating region provided the mode electric field is real (for example, the mode electric field will be real 
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if ),(avg yx  is real and the z-component of the field is negligible). The coupling constant couples the 

forward and the backward propagating waves. To solve the above set of equations, we assume, 
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)(zB  and )(zB  satisfy, 
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We have a 2x2 linear system of equations. The eigenvalues of the matrix on the right hand sided are 
s  where, 
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The corresponding eigenvectors are, 
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The most general form of the solution is, 
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The constants 1C  are 2C  are determined by the boundary conditions. Note that in terms of )(zB  

and )(zB  the electric field can be written as, 
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From the expression above, the effective propagation vector of, say the forward going wave, at 
frequency   is not    anymore but is  k  where, 

        2222   oooo qk  

The difference between the modal dispersions    and  k  is depicted in the Figure below.  

 
Note that a frequency gap (or a bandgap) opens in the dispersion relation of magnitude given by, 
  gg v2  

For values of frequency that fall in this bandgap, no real value of the propagation vector  k  
satisfies the dispersion relation given above.  
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13.1.3 DFB Waveguide Mirror (or a Distributed Bragg Reflector (DBR)): 
Consider a DFB structure as shown in the Figure below. We need to calculate the reflectivity of the 
mirror for a wave coming in inside the waveguide from the left side. The reflection and transmission 
coefficients are, 
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The boundary conditions are,   0 LB  and   00 B . 

 
We need to find the constants 1C  are 2C  in, 
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in order to satisfy the above boundary conditions. The final result is, 
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The reflection coefficient is, 
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The transmission coefficient is, 
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The magnitude of the reflection coefficient is maximum when the wavevector   of the incident wave 

is equal to o  and 0 , 
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The Figure below plots the reflectivity of a DBR mirror as a function of the wavelength (or 
wavevector) for different values of the coupling constant. Note that the reflection coefficient r  goes 
to zero when, 
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The first zero in the reflection on either side of o  determines the bandwidth over which the DBR 

mirror is an effective reflector. This bandwidth DBR  is, 
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An infinitely long DFB structure is a one dimensional photonic bandgap material. The stopband or the 
bandgap g  of this material is, 

     gLg v2DBR    

In crystals, the bandgap in the electron energy spectrum comes about as a result of the Bragg 
scattering of electrons from the periodic atomic potential and the magnitude of the bandgap is 
proportional to the strength of the scattering potential. In DFB structures, the photonic bandgap also 
results from the Bragg scattering of electromagnetic waves from the periodic index of the medium, 
and the strength of the bandgap also depends on the strength of the index variations as captured by the 
coupling constant  .  
 
 

13.2 Distributed Feedback (DFB) Lasers (1D Photonic Crystal 
Lasers) 
 
13.2.1 Introduction: 
The structure of a DFB laser is shown in the Figures below. The laser cavity is not like any we have 
seen before. There is no distinction between the optical cavity and the mirrors. The DFB grating 
provides back reflection that keeps the photons from escaping from the two end facets. The facets are 
assumed to be perfectly AR coated and provide no reflection. The laser cavity “minors” are 
“distributed” along the entire length of the cavity. The techniques developed in the last section are 
adequate to analyze lasing in DFB lasers. Analyzing a laser involves at least: (i) finding the 
frequencies of the lasing modes, (ii) finding the threshold gain thg

~  and the photon lifetime of each 

mode, and (iii) finding the output coupling efficiency o .  
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13.2.2 DFB Laser Analysis: 
For the waveguide cavity shown above, photon lifetime is related to the threshold gain thg

~  by the 
familiar relation: 

p
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Photon lifetime is related to the two different kinds of losses; mirror or external losses, and cavity 
internal losses,  
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To analyze the DFB laser shown above, we first assume 0~   (i.e. no material losses in any region) 

and calculate the threshold gain, thg
~ . From the previous Section, the electric field and the magnetic 

field are, 
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The propagation vector   now includes the modal gain, 
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The solution obtained in the previous Section for the boundary conditions,   0 LB  and   00 B , 
was, 
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Here,  
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Therefore,  is now complex. Recall from Chapter 12 that the condition for lasing is that light 

comes out of the device when no light goes into the device. This can happen if 0)(  LB  and 

0)0( B  when both 0)0( B  and 0)(  LB . Using the expressions given above, it is not 
difficult to see that lasing implies, 
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This a complex equation. The real and imaginary parts of the expression on the left hand side must 
separately equal zero. This gives us two equations. We have two unknowns; the threshold gain thg

~

and the frequency (or the value of ' ) of the lasing mode. Solution of the above equation gives 

multiple pairs. A pair is a value for the lasing mode propagation vector '  and a corresponding value 

for the threshold gain thg
~ . The solutions )~,'( thg  are shown in the Figure below as circles in a 

Lgthao
~)'(   plane for different values of the coupling constant L  (assuming 0~  ). 

 
As is the case in all lasers, the modes with the lowest threshold gain lase, and the other modes do not 
lase. For any given value of L , the two modes that have the lowest threshold gain are the ones 

whose '  values are located closest to the 0)'(  Lo axis. (i.e. those modes whose '  values are 

closest to o ). Also note that there are no lasing modes with frequencies (or '  values) within the 
bandgap of the DFB structure. The two modes with the lowest threshold gain are symmetrically 
located on the edges of the photonic bandgap. Also note that the threshold gain goes down with the 
increase in the value of the coupling constant (i.e. with the increase in the grating strength). 
 
Once we have determined thg

~ , the photon lifetime p  and the mirror loss m~  can be found from the 

relation, 

(’-o) L 

 a
 ĝ

th
 L

 

|| L = 0.5, 1, 3, 5 
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thgamg
p

gvv ~~1
 


 

Once m~  has been determined, we can introduce internal cavity loss in the following way. The 
complex propagation vector in the presence of loss is, 

2

~

2

~
"'

 i
g

in
c

i aeff   

The photon lifetime with material loss is, 

)~~(
1 


 mg
p

v  

And the threshold gain in the presence of material loss is then, 

)~~(
1~ 


 mg
p

thga vgv  

The output coupling efficiency o  is, 




 ~~

~




m

m
o  

From the analysis so far it seems that DFB lasers should have two modes lasing at the same time. In 
real DFB lasers, only one of these two modes ends up lasing. Effects such as structural imperfections, 
spatial hole burning, and imperfect and unequal AR coatings end up decreasing the threshold gain of 
one of these two modes compared to that of the other one.  
 
 
 

13.3 Quarter-Wave Shifted (QWS) Distributed Feedback (DFB) 
Lasers (1D Photonic Crystal Defect Lasers) 
 
13.3.1 Introduction: 
A QWS DFB laser is realized by shifting the grating on the left half of the device by one-quarter of a 
wavelength with respect to the grating on the right half of the device, as shown in the Figure below, 
thereby creating a “crystal defect”.  

 
We know from solid state physics that crystal defects can have energies within the bandgap. The 
frequency of the lasing mode in a QWS DFB laser is also within the bandgap of the DFB structure 
and the intensity of the lasing mode is localized near the defect. One can also think of the QWS DFB 
laser as being similar to a VCSEL in which a half-wavelength long cavity is sandwiched between two 
DBR mirrors. A quarter-wave shifted (QWS) DFB laser has the advantage that it has a unique mode, 

InP (n-doped) substrate 

InP (p-doped) 

z=0 z=2L

InGaAsP SCH and QWs  

InGaAsP/InP grating region 

a a/2 a 

z=L
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the defect mode, that has the lowest threshold gain compared to all the other modes, and this mode 
always ends up being the lasing mode. Therefore, the lasing frequency can be designed with high 
accuracy without being at the mercy of structural imperfections.  
 
13.3.2 QWS DFB Laser Analysis: 
One can obtain the threshold gain of the QWS DFB laser by the same method as used in the previous 
section for ordinary DFB lasers. Here, we will use a different technique. We assume that the laser 
facets have perfect AR coatings. If one stands right in the middle of the laser cavity at Lz   and 
calculates the reflection coefficient Rr  looking towards the right half of the cavity the answer, 
obtained earlier, is, 
  

 )cosh()sinh(

)sinh(*

sLissL

sL
rR 







 

Similarly, the reflection coefficient looking towards the left will be exactly the same, 

 
)cosh()sinh(

)sinh(*

sLissL

sL
rL 







 

Now imagine there is a cavity of zero length located right at Lz  . The roundtrip condition for lasing 
for this cavity will be simply, 
 1RLrr  

This gives, 

 

01
)cosh()sinh(

)sinh(*

1
)cosh()sinh(

)sinh(*
2






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










sLissL

sL

sLissL

sL







 

This is again a complex equation. Depending on the phase of the coupling constant, only one choice 
of the sign will give physically correct answers. The real and imaginary parts of the expression on the 
left hand side must separately be equal to zero. This gives us two equations. We have two unknowns; 
the threshold gain thg

~ and the frequency (or the value of ' ) of the lasing mode. Solution of the 

above equation gives multiple pairs. A pair is a value for the lasing mode propagation vector '  and a 

corresponding value for the threshold gain thg
~ . The results are depicted in the Figure below for two 

different values of the coupling constant (assuming 0~  ).  

 
Note that in addition to the usual modes that appear on either side of the bandgap, there is a single 
mode with frequency right in the middle of the bandgap. This is the mode localized at the defect and 
has a threshold gain much smaller than all the other modes and is therefore the only mode that lases. 

(’-o) L 


a 
ĝ

th
 L

 

|| L = 0.5, 1 
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Once we have found thg
~ , the photon lifetime p  and the mirror loss m~  can be found from the 

relation, 

thgamg
p

gvv ~~1
 


 

And once m~  has been determined, we can introduce internal cavity loss in the same way as was 
done in the case of DFB lasers without a quarter–wave shift. QWS DFB lasers have become important 
in modern wave division multiplexed (WDM) fiber optic communication systems that use dense 
wavelength packing which requires very precise control on the wavelengths of the lasers.   
 
 
 

13.4 2D Photonic Crystal Defect Lasers 
 
13.4.1 Introduction: 
Two dimensional photonic crystal (2D PC) lasers have also been realized in the last decade. Although, 
2D PC lasers require numerical tools for their analysis, the basic principles are the same as in the case 
of the 1D PC lasers (DFB lasers). Some examples of 2D PC lasers with defects are shown in the 
Figures below. In two dimensions, one has more freedom to tailor defects which localize the lasing 
mode.    
 

 
 
 

 

Two-Dimensional Photonic Bandgap Defect Mode Laser 
Science, 11 June (1999). 

Seeking the Ultimate Nanolaser 
Science, 13 October (2006) 

Ultrafast Photonic Crystal Nanocavity Laser 
Nature Physics, July (2006) 
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DBR mirror: 
 
<insert figure> 
 

Suppose an incident wave is coming from the left side. 0)0(  B  and .0)(  LB  These are the 

two boundary conditions needed to determine 1c  and 2c  in (2). The result is (note: siq  ): 

)0(
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The minor reflection coefficient r  is 
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)(sinh*

)0(
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SLisSL
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B
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and the reflectivity R  is 2|| r . 

)0(

)( 0






B

eLB
t

Li
 note the Lei 0 factor – since the reflection + transmission coefficients are defined 

for the actual electric fields. The reflectivity R  is maximum when 00   (i.e. when the 

input wave’s  corresponds to the Bragg vector 0  of the grating). 

max
2

max )|(|tanh RLkR   increases with the value of the product  Lk || . On the next page R  

is plotted as a function of L  for different values of Lk || . Note that R  goes to zero when 
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<insert figure> 
 
DBR Lasers 
 
DBR lasers use DBR mirrors in a waveguide geometry, as shown below: 
 
<insert figure> 
 
The length of the active region is L  (there are no quantum wells in the DBR mirrors). We shall 
assume that the grating is shallow and presents a small perturbation to the waveguide defined by 

).,( yxavg  The lasting condition is: 
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where i Cavity intrinsic loss gV group velocity of mode in the optical cavity L length of the 

cavity and the photon lifetime p  is: 
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Note that the reflectivities 1R  and 2R depend on the value of  (or frequency   since 

)( effn
c

 ). Consequently, the threshold gain thg
~  will also depend on frequency  . 

Longitudinal modes of the cavity whose frequencies fall within the reflection bandwidth of the DBR 
mirrors see high reflectivity mirrors while those whose frequencies fall outside the reflection 
bandwidth of the mirrors see low reflectivity mirrors. 
The questions then are: what are the frequencies of the longitudinal modes? How many longitudinal 
modes are present within the reflection bandwidth of the minus? What is the frequency spacing of the 
longitudinal modes? 
Let the DBR mirror reflection coefficients be written as 

21
2211

 ii eRreRr   

The roundtrip phase condition is then: 
}3,2,1{22 21  nnL   

But note that 1 and 2  depend on  for DBR mirrors, i.e. 

 nL 2)()(2 21   

So its not that trivial to use the above equation to determine the  values (or the frequencies) of the 
cavity longitudinal modes. 
But we know that for a DBR mirror that is AR coated on the other end the mirror reflection 
coefficient is: 
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Since 2r  has a small bandwidth and is significant for only those values of  that are close to ,0  we 

may expand the phase of 2r , i.e. 2 , around .0  
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where 22 ||*,|| kiki ekkekk   , and the grating phase k is some important constant phase. 
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Define an effective grating length effL as: 
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The roundtrip phase condition becomes: 
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The above equation can be solved for the allowed values of   (that are near 0 ). 
 
Mode Spacing & Mode Selection: 
 
The spacing   between the cavity modes follows from the above equation: 
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From earlier analysis, the reflectivity bandwidths of the DBR mirrors are: 
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There can be many longitudinal modes lasing at the same time if the cavity mode spacing   is much 

smaller than the DBR mirrors’ reflectivity bandwidths. Due can have only a single longitudinal mode 
lasing in the cavity if   is equal to a larger than the reflectivity bandwidths of the DBR mirrors. We 

have,   



































 2

1

2
2

2

2

1,2,

21 ||2,||2

,

L
k

L
kLLL

bandwidthbandwidth

effeff








  

  Multiple longitudinal mode lasing. And, 

1,2,
21

,
bandwidthbandwidth

effeff LLL   


  

  Single longitudinal mode lasing. 
The spacing in frequency between the cavity longitudinal modes can be obtained as follows: 
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In the same way, the reflectivity band widths of the DBR mirrors in frequency are: 
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Single Mode Operation: 
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Longitudinal mode selection (for lasing) in single mode DBR lasers can be understood as follows: 
Suppose there are three longitudinal modes within the reflectivity bandwidth of the DBR mirrors (as 
shown on the next page). 
 
<insert figure> 
 
The longitudinal mode in the center sees the highest reflectivity from the DBR mirrors and so has the 
smallest value of the threshold gain thg

~ . The two modes on either side of the center mode see lower 
mirror reflectivities and, consequently, have higher threshold gains compared to the center mode. 
When the laser is electrically pumped and the gain g~  becomes equal to the threshold gain thg

~  of the 
center mode, the center mode starts lasing. When the center mode starts lasing, the carrier density in 
the gain region gets clamped to the value thN corresponding to the threshold gain thg

~  of the center 
mode. If the current is increased, further, the photon density in the center mode increases but the 
carrier density remains fixed at thN . The gain of the active region also, therefore, remains fixed at the 

threshold gain thg
~  of the center mode. The gain of the active religion, therefore, never becomes large 

enough so that the side modes can also large. In short, the clamping of the carrier density (and gain) at 
the onset of the lasing of the center mode prevents the side modes (which have higher threshold gains) 
from lasing. 
 


