Semiconductor Optoelectronics (Farhan Rana, Cornell University)

Chapter 13

Distributed Feedback (DFB)
Structures and Semiconductor DFB
Lasers

13.1 Distributed Feedback (DFB) Gratings in Waveguides

13.1.1 Introduction:
Periodic structures, like the DBR mirrors in VCSELSs, can be also realized in a waveguide, as shown
below in the case of a InGaAsP/InP waveguide.
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In the waveguide shown above, periodic grooves have been etched in the top surface of the InGaAsP
waveguide before the growth of the top InP layer. Such periodic grating structures are examples of
one dimensional photonic bandgap materials. The relative dielectric constant is a function of the z-
coordinate and can be written as,

E(X,y,Z) = 5avg(X= y) + A&'(X, y,Z)
The average dielectric constant gavg(x,y) corresponds to the waveguide structure shown below in

which the grating region has been replaced by a layer with a z-averaged dielectric constant.
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The z-average of the part Ag(x,y,Zz) is therefore zero. If the period of the grating is a , then one may
expend Aé&(X,Yy,Zz) in terms of a Fourier series,

As(x,y,2)=f(x,y) ¥ dpe"pGZ

p=0

where the reciprocal lattice vector (also called the grating vector) G equals 27/a. If Ag(x,y,z) is
real then, d_, = d; . f (X,y) equals one in the grating region and equals zero everywhere else. In the
above Fourier series for Ag(X,y,Zz), usually the fundamental harmonic dominates and therefore we
will assume that,

As(x,y,2) =f(x,y) [d1e’GZ + d_1e_’GZJ
A wave travelling in the waveguide with a wavevector £ can Bragg scatter from the periodic grating
provided the conditions for Bragg scattering are satisfied,

B £G = Binal

a)(,B) = a’(ﬂfinal)
The only way these conditions can be satisfied in one dimension is when Sfing = —f, i.e. the wave is
reflected in the opposite direction,

p-G=-p
G

jﬂ—E
A

= a=
2neff

So a forward traveling wave will be Bragg reflected if its wavevetor is close to G/2 = z/a . If we call
this special wavevector S, then S, = G/2 = z/a. We can write Ag(X,y,Z2) as,

Ae(x,y,2) = F(x,y) [dreo + oy 127

13.1.2 Wave propagation in a DFB Grating Waveguide — Coupled Mode Technique:
One can analyze wave propagation in a DFB grating waveguide in two steps discussed below.

Step 1:
First consider the waveguide corresponding to gavg(x,y) shown in the Figure above and solve for
the eigemodes and the propagation vectors (eigenvalues) for all frequencies of interest. The

eignemodes, E(X,y)eiﬁz and I:I(X,y)eiﬁ Z satisfy Maxwell’s equations,
V x E(x,y)eiﬂz = iouyH(x, y)eiﬁz
Vx FI(X’.V)ei'BZ = —iwEsEayg (X=Y)E(X’.V)eiﬁz

or,
(Ve +iB2) % E(x,y) = iouoH(x, y)
(Vt + iﬂﬁ)x H(X’y) = _iwgogavg(xi Y)E(X’.V)
The above equations can be solved to give the mode effective index Ngg (aJ) . Given a grating
structure, we can now find the frequency @, that will Bragg scatter from the relation,
Via

ﬂ(wo)za)_;neff(a’o)zﬂo 3

If the wavevector S is very different from [, then the grating structure will likely not affect the
solution much (there will be not much scattering). The interesting case is when f = f,. This case is
discussed below.
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Step 2:
We treat the part Ag(x,y,z) as a perturbation. The perturbation will have the strongest affect when

B = Bo.For B~ f,,we write the solution as,
E(x,y,z)= A, (2) E(x,y)e" + A_(2) E (x,y)e~"P?

Hlxy.2)= A (2) Hlxy)e” - A(2) H'(x.y e~
Here, the functions A, (Z) and A_ (Z) are assumed to be slowly varying in space. The form of the

solution allows for coupling between the forward and backward going waves because of Bragg
scattering from the grating. The technique described below is called coupled mode theory. Plugging
the assumed form of the solution in Maxwell’s equations gives,

V x [A+ (2) E(x,y)e? + A_(2) E” (X,y)e—iﬂzJ: o lA+ (2)Alx y)e™ A (Z)I:I*(x,y)e"ﬂzl
V x [A+ (z) I:I(X,y)ei/fz - A_(Z) I:I*(x,y)e_wz]= —iwe, [gavg (X,y)+ f(X,y) (d1ei2ﬁoz + d_1e7"2ﬁ02

x [A+ (2) E(x.y)e" + A_(2) E*(X:Y)e_iﬂz]

Using the Maxwell’s equation satisfied by the eigenmode we get,
=(y ) 9A:(2) = (4 ) 9A-(2) i
E(x, AN iz | 54 E X, hz _ o
xE(xy) = oy) == dz

N>

2xH(x, y)dA +(2) e _ 3 xH (x, y) Ale) e P = _jwe, f(x, y)(d e/%ho? 1 §_,e71%Po2 )

dz dz
<[a, ) Byl + A2 E Gyl ]
We multiply the first equation above by H (X,y) and multiply the second equation above by

E *(X,y) and then subtract the two equations, and keep only the terms that are approximately phase
matched to get on left and right hand sides to get,

W) _ g i i2pole _ TIVIE (y) E boy)axdy
dz G y)xH (xy)+E (xy)x Hx,y)]. 2 dxdy
If instead of subtracting, we add the two equations then we obtain,
dA(2) _ o ori2p-pole (% y)E(xy). E(x,y) dxdy_
= 0d-1€ = —
dz if [E(x,y)x H (x,y)+E (x,y)x H(x,y)J. Z dxdy

If (and only if) Ag(X,y,z) isreal and d_q = d1* , then the above two equations can be written as,

% m Zﬂ _ L Ny eig(ﬁ—ﬂo \ i e/2(()ﬂﬂo )z}{ 2+ 8}

where the coupling constant x is,
Jinng'E"(x,y). E"(x, ) dxdy

M= _
a)god1 Grating reglon [fnng' E ( ) E( Y) dxdy
2nng ) nnME (x,y).E(x,y)dxdy  Rel]f [E (x,y)x H (x, J Z dxdy
- 9] d1
- M
2nng vy
Here, nng” is the product of the index and the (material) group index of the grating region, v is the

group velocity of the mode, and the overlap integral I'g is the usual mode confinement factor for the
grating region provided the mode electric field is real (for example, the mode electric field will be real



Semiconductor Optoelectronics (Farhan Rana, Cornell University)

if €avg (x,y) is real and the z-component of the field is negligible). The coupling constant couples the

forward and the backward propagating waves. To solve the above set of equations, we assume,
B,(z)= A, (2)e//~Fo)?

B_(z)=A_ (Z)e—i(ﬁ—ﬂo )z

B, (z) and B_(z) satisty,

d [Bi(2)|_[i(B=Po) ix  TB.(2)
dz|B_(z) —ix* —i(f-p,) | B_(2)

[iap ik B.(2)
“|-ix* —iAB||B_(2)

We have a 2x2 linear system of equations. The eigenvalues of the matrix on the right hand sided are
+ s where,

s= |K|2 ~AB? =-iq -s= —\,|K|2 ~AB? =iq

The corresponding eigenvectors are,

-S& , g .
ApB—is Ap +is

The most general form of the solution is,

|:B+(Z)}=C1{ _K' }eiqZ+C2[ _K' }e—iqz {iq.:_s}
B_(z) Ap —is Ap +is —ig=s

The constants Cq are C, are determined by the boundary conditions. Note that in terms of B, (Zz)
and B_(z) the electric field can be written as,

E(x,y,z) = E(x,y)B, (z)ePo? + E"(x,y)B_(z)e "Po?
From the expression above, the effective propagation vector of, say the forward going wave, at
frequency o is not ﬂ(a)) anymore but is K (a)) where,

K0)= fo + (@)= fo +\[AB2 ~kP = Bo +(B0) - fo )2 - i

The difference between the modal dispersions /3 (a)) and k (a)) is depicted in the Figure below.

Frequency (o)

-2

Wavevector (n/a)

Note that a frequency gap (or a bandgap) opens in the dispersion relation of magnitude given by,

g = 2vglx]
For values of frequency that fall in this bandgap, no real value of the propagation vector K (a))
satisfies the dispersion relation given above.
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13.1.3 DFB Waveguide Mirror (or a Distributed Bragg Reflector (DBR)):

Consider a DFB structure as shown in the Figure below. We need to calculate the reflectivity of the
mirror for a wave coming in inside the waveguide from the left side. The reflection and transmission
coefficients are,

. B_(0) _ B (L) isL
B.(0) B.(0)
The boundary conditions are, B_(L)=0 and B, (0)=0.
B.(0) B,(L)
< <
B (0) B(L)
| | >
z=0 z=L
We need to find the constants Cq are C; in,
B,(z) ¢, _’f. el 4 C, _K' e—iaz iq.=—3
B_(z) AB —is AB +is -ig=s

in order to satisfy the above boundary conditions. The final result is,

B, (z)=— Ap sinh[ts(z -L)] +.is cosh[s(z - L)] B, (0)
S sinh(sL)+ iscosh(sL)
B_(2) x * sinh[s(z - L)] B, (0)

~ ABsinh(sL)+iscosh(sL)
The reflection coefficient is,

_B_(0) —k *sinh(sL)

B B,(0) ~ ApBsinh(sL)+ iscosh(sL)
The transmission coefficient is,

_B.(L) isol _ is ool

B, (0) ApBsinh(sL) + iscosh(sL)

The magnitude of the reflection coefficient is maximum when the wavevector £ of the incident wave
is equal to S, and AS =0,

i* tanh(x|L)

r|Aﬂ=0 - ]

= Rinax = tanh?(|x|L)
The Figure below plots the reflectivity of a DBR mirror as a function of the wavelength (or
wavevector) for different values of the coupling constant. Note that the reflection coefficient r goes
to zero when,
sL =inx { n =nonzero integer
2 n27r2
Y

= (88)? ~ x|

= (B-Po)? =|«? +n2[%j
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The first zero in the reflection on either side of S, determines the bandwidth over which the DBR
mirror is an effective reflector. This bandwidth AfpgR 1is,

2 2
AﬂDBR =2 |K|2 +(%J = Awpgr = 2Vg |K|2 +[%)

An infinitely long DFB structure is a one dimensional photonic bandgap material. The stopband or the
bandgap @y of this material is,

a)g = AwDBR|L—)oo = 2Vg|K|
In crystals, the bandgap in the electron energy spectrum comes about as a result of the Bragg
scattering of electrons from the periodic atomic potential and the magnitude of the bandgap is
proportional to the strength of the scattering potential. In DFB structures, the photonic bandgap also
results from the Bragg scattering of electromagnetic waves from the periodic index of the medium,
and the strength of the bandgap also depends on the strength of the index variations as captured by the
coupling constant « .

13.2 Distributed Feedback (DFB) Lasers (1D Photonic Crystal
Lasers)

13.2.1 Introduction:

The structure of a DFB laser is shown in the Figures below. The laser cavity is not like any we have
seen before. There is no distinction between the optical cavity and the mirrors. The DFB grating
provides back reflection that keeps the photons from escaping from the two end facets. The facets are
assumed to be perfectly AR coated and provide no reflection. The laser cavity “minors” are
“distributed” along the entire length of the cavity. The techniques developed in the last section are
adequate to analyze lasing in DFB lasers. Analyzing a laser involves at least: (i) finding the
frequencies of the lasing modes, (ii) finding the threshold gain gth and the photon lifetime of each

mode, and (iii) finding the output coupling efficiency 7, .
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A DFB Laser
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13.2.2 DFB Laser Analysis:
For the waveguide cavity shown above, photon lifetime is related to the threshold gain gth by the
familiar relation:

~ 1
Favg9th =—
T
p
Photon lifetime is related to the two different kinds of losses; mirror or external losses, and cavity
internal losses,

1 ~ ~
— =Vg(am +a)
p
To analyze the DFB laser shown above, we first assume & = 0 (i.e. no material losses in any region)
and calculate the threshold gain, gy, . From the previous Section, the electric field and the magnetic

field are,
E(xy,2)=A.(2) E(x y)e" + A_(2) E" (x.y)e "

H(x,y.z)=A,(2)H(x.y )" - A_(2) H (x.y e~ "**

The propagation vector S now includes the modal gain,

~

oo @ H g
! e / 32

The solution obtained in the previous Section for the boundary conditions, B_(L)=0 and B, (0)# 0

b

was,
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— Afsinh[s(z—-L)]+iscosh[s(z—-L)]

B.(2)= : . B, (0)
Apsinh(sL) + iscosh(sL)
B_(z)~ /.c* sinh[s(.z—L)] B, (0)
Afsinh(sL) + iscosh(sL)

Here,

~

AR =B~ fo=B-ITa 3~ o

s = y[xf? - a2,

Therefore, Afis now complex. Recall from Chapter 12 that the condition for lasing is that light
comes out of the device when no light goes into the device. This can happen if B, (L)= 0 and
B_(0)#0 when both B, (0)=0 and B_(L)=0. Using the expressions given above, it is not
difficult to see that lasing implies,
Apsinh(sL)+iscosh(sL)=0

This a complex equation. The real and imaginary parts of the expression on the left hand side must
separately equal zero. This gives us two equations. We have two unknowns; the threshold gain fjth
and the frequency (or the value of f') of the lasing mode. Solution of the above equation gives
multiple pairs. A pair is a value for the lasing mode propagation vector §' and a corresponding value
for the threshold gain gy,. The solutions (/4',gy,) are shown in the Figure below as circles in a
(B'-Po)-TagL plane for different values of the coupling constant |K|L (assuming @ =0).

10 . !
|IL=0.5,1,3,5

Iy gth L

N W N [6)] [0} ~l [e°] [(e]
O:
o
N
[}
o
o
[}
O:
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0
(B-po) L

As is the case in all lasers, the modes with the lowest threshold gain lase, and the other modes do not
lase. For any given value of |K|L, the two modes that have the lowest threshold gain are the ones
whose f' values are located closest to the (f'-f, )L =0 axis. (i.e. those modes whose f' values are
closest to f3,). Also note that there are no lasing modes with frequencies (or 4" values) within the

bandgap of the DFB structure. The two modes with the lowest threshold gain are symmetrically
located on the edges of the photonic bandgap. Also note that the threshold gain goes down with the
increase in the value of the coupling constant (i.e. with the increase in the grating strength).

Once we have determined Gy, , the photon lifetime ¢ p and the mirror loss &p, can be found from the

relation,
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1 ~ ~
— =Vgam =1aVggm
p
Once @, has been determined, we can introduce internal cavity loss in the following way. The
complex propagation vector in the presence of loss is,

~

1 H " a) . g . a
=[4Hif"=—ngr —1 I'g=+1—
p=Pif'=" ner ~iTa J +i
The photon lifetime with material loss is,
1 ~ ~
—=Vvg(am +a)
Tp
And the threshold gain in the presence of material loss is then,
~ 1 ~ ~
Lavggin =—=Vvg(am +Q)
p
The output coupling efficiency 7, is,

m

1o G +a

From the analysis so far it seems that DFB lasers should have two modes lasing at the same time. In
real DFB lasers, only one of these two modes ends up lasing. Effects such as structural imperfections,
spatial hole burning, and imperfect and unequal AR coatings end up decreasing the threshold gain of
one of these two modes compared to that of the other one.

13.3 Quarter-Wave Shifted (QWS) Distributed Feedback (DFB)
Lasers (1D Photonic Crystal Defect Lasers)

13.3.1 Introduction:

A QWS DFB laser is realized by shifting the grating on the left half of the device by one-quarter of a
wavelength with respect to the grating on the right half of the device, as shown in the Figure below,
thereby creating a “crystal defect”.

InGaAsP/InP grating region
I

InP (p-doped)
i — — | ] |
f

InGaAsP SCH and QWs

InP (n-doped) substrate

a a al2

z=0 z=L z=2L

»

We know from solid state physics that crystal defects can have energies within the bandgap. The
frequency of the lasing mode in a QWS DFB laser is also within the bandgap of the DFB structure
and the intensity of the lasing mode is localized near the defect. One can also think of the QWS DFB
laser as being similar to a VCSEL in which a half-wavelength long cavity is sandwiched between two
DBR mirrors. A quarter-wave shifted (QWS) DFB laser has the advantage that it has a unique mode,
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the defect mode, that has the lowest threshold gain compared to all the other modes, and this mode
always ends up being the lasing mode. Therefore, the lasing frequency can be designed with high
accuracy without being at the mercy of structural imperfections.

13.3.2 QWS DFB Laser Analysis:

One can obtain the threshold gain of the QWS DFB laser by the same method as used in the previous
section for ordinary DFB lasers. Here, we will use a different technique. We assume that the laser
facets have perfect AR coatings. If one stands right in the middle of the laser cavity at z=L and
calculates the reflection coefficient rp looking towards the right half of the cavity the answer,

obtained earlier, is,

e = — x *sinh(sL)
Ap sinh(sL) + is cosh(sL)
Similarly, the reflection coefficient looking towards the left will be exactly the same,
" = — k *sinh(sL)
Ap sinh(sL) + is cosh(sL)

Now imagine there is a cavity of zero length located right at z = L. The roundtrip condition for lasing
for this cavity will be simply,

Nnrr = 1
This gives,
— x* sinh(sL) 2_1
A sinh(sL) + is cosh(sL)

- — k *sinh(sL)
Ap sinh(sL) + is cosh(sL)
This is again a complex equation. Depending on the phase of the coupling constant, only one choice

of the sign will give physically correct answers. The real and imaginary parts of the expression on the
left hand side must separately be equal to zero. This gives us two equations. We have two unknowns;

the threshold gain §t,, and the frequency (or the value of /') of the lasing mode. Solution of the
above equation gives multiple pairs. A pair is a value for the lasing mode propagation vector £' and a

+1=0

corresponding value for the threshold gain §th- The results are depicted in the Figure below for two
different values of the coupling constant (assuming & =0).

10 T
9 |4 L=0.5,1
s o, / \ ot
A1 . / \ - e
L e . / o o\ o
<§ 5 e o ° ° \
L? 4 o -]
3
2 -]
1
-%0 -10 0 10 20
(B-Po) L

Note that in addition to the usual modes that appear on either side of the bandgap, there is a single
mode with frequency right in the middle of the bandgap. This is the mode localized at the defect and
has a threshold gain much smaller than all the other modes and is therefore the only mode that lases.
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Once we have found Gy, , the photon lifetime 7p and the mirror loss @, can be found from the

relation,
1 ~ ~

— =Vgam =Tavggi

p
And once &, has been determined, we can introduce internal cavity loss in the same way as was
done in the case of DFB lasers without a quarter—wave shift. QWS DFB lasers have become important
in modern wave division multiplexed (WDM) fiber optic communication systems that use dense
wavelength packing which requires very precise control on the wavelengths of the lasers.

13.4 2D Photonic Crystal Defect Lasers

13.4.1 Introduction:

Two dimensional photonic crystal (2D PC) lasers have also been realized in the last decade. Although,
2D PC lasers require numerical tools for their analysis, the basic principles are the same as in the case
of the 1D PC lasers (DFB lasers). Some examples of 2D PC lasers with defects are shown in the
Figures below. In two dimensions, one has more freedom to tailor defects which localize the lasing
mode.

Total internal reflection (TIR)
Distributed Bragg reflection (DBR)

/2 waveguide (n = 3.4)
Active region (4 QWs) Etched Air Holes (n = 1)
InP Substrate (n = 3.2) Undercut Region {n = 1)

Two-Dimensional Photonic Bandgap Defect Mode Laser
Science, 11 June (1999).

eeking the Ultimate Nanolaser
cience, 13 October (2006)

S
S

Ultrafast Photonic Crystal Nanocavity Laser
Nature Physics, July (2006)
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DBR mirror:

<insert figure>

Suppose an incident wave is coming from the left side. = B*(0)#0 and B (L) = 0. These are the
two boundary conditions needed to determine ¢4 and ¢, in (2). The result is (note: iq = —S ):

B*(z)=" AﬂS|nh[§(z —L)]+./s cosh[s(z —1)] B*(0)
ABsinh(SL) + is cosh(SL)
B (z)= k smh[s(.z -L)] B*(0)
Apsinh(SL)+is cosh(SL)
The minor reflection coefficient r is
B~(0) _ —k *sinhs(zL)

" B*(0) ABsinh(SL)+iscosh(SL)
and the reflectivity R is | r |2.

B + (L )e iﬂOL
- BY(0)
for the actual electric fields. The reflectivity R is maximum when AfS = g — Sy =0 (i.e. when the

t note the ei Aol factor — since the reflection + transmission coefficients are defined

input wave’s 3 corresponds to the Bragg vector S of the grating).

Rmax = tanh2(| K |L) = Rpay increases with the value of the product |k | L. On the next page R
is plotted as a function of ABL for different values of |k |L. Note that R goes to zero when
2 _n 272'2

2
SL =inr = (Aﬂ)z— |k |“= — = (8- Po )2 = k |2 +n2(%j , and the first null occurs when
L

2
(B-PBo)= \/ | k |2 +(%J = Reflection bandwidth increases with | K |.

<insert figure>

DBR Lasers

DBR lasers use DBR mirrors in a waveguide geometry, as shown below:

<insert figure>

The length of the active region is L (there are no quantum wells in the DBR mirrors). We shall

assume that the grating is shallow and presents a small perturbation to the waveguide defined by
Cavg (x,y ). The lasting condition is:
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~ 1 1
Uyy 9th — i =—In[ }
L | JR4R2
where «; = Cavity intrinsic loss Vg =group velocity of mode in the optical cavity L =length of the

cavity and the photon lifetime 7, is:

1 ~ VY 1
— = WV Gin =i ——— |+Vga; =Vg (e +ap)
Tp L [\/R1R2]

Note that the reflectivities R4 and Roydepend on the value of f(or frequency @ since

p :gneff (w)). Consequently, the threshold gain gy, will also depend on frequency .
c

Longitudinal modes of the cavity whose frequencies fall within the reflection bandwidth of the DBR
mirrors see high reflectivity mirrors while those whose frequencies fall outside the reflection
bandwidth of the mirrors see low reflectivity mirrors.

The questions then are: what are the frequencies of the longitudinal modes? How many longitudinal
modes are present within the reflection bandwidth of the minus? What is the frequency spacing of the
longitudinal modes?

Let the DBR mirror reflection coefficients be written as

ry :\/,‘:\’_1e"¢1 rp = Rze"qi2

The roundtrip phase condition is then:

2L +¢1+¢o =2nz {n=123--}

But note that ¢qand ¢, depend on S for DBR mirrors, i.e.

2PL +¢1(B)+ 42(B) =2nz

So its not that trivial to use the above equation to determine the S values (or the frequencies) of the

cavity longitudinal modes.
But we know that for a DBR mirror that is AR coated on the other end the mirror reflection
coefficient is:

~ —k *sinh(SLy) AB=p-Po
B ABsinh(SLy ) +is cosh(SLy) S =1k |2 —A,Bz

Sincery has a small bandwidth and is significant for only those values of f that are close to S, we

ro where {

may expand the phase of ry, i.e. g5, around fy.

b8 = b2(Bo)+ 222 (5- o)
Bo

0B
But
#2(8) = 7 - 2 w{w}

ABsinh(SLy)

where k =| k |ei¢k2, k*= k| e 19Kz , and the grating phase ¢ is some important constant phase.

T T

= ¢2(Bo) =7 — ¥, —§=5—¢k1

oda| _tanh(lk |Lp)

B |, 1K |

Define an effective grating length Log as:
10¢y|  tanh|k|L,

Letro =+ =
28|, 21k

The roundtrip phase condition becomes:




Semiconductor Optoelectronics (Farhan Rana, Cornell University)

2BL +$(B)+o(B)=2nx
2PL + 7 — (P, + Pk, )+ 2B = Boletr1+ 28— Bo)lefr2 =2nx.

The above equation can be solved for the allowed values of # (that are near f).

Mode Spacing & Mode Selection:

The spacing 64 between the cavity modes follows from the above equation:
Opl2L +2Lgprq + 2Lepr 2] = 27

T
op=rT—"T—"""—

L +Lefr1+Lefr2
From earlier analysis, the reflectivity bandwidths of the DBR mirrors are:

5 2
o k2= =2 |k |2+ =
5ﬁbandwidth,2 =2 |k | -{LZ ] ’é‘ﬂbandwidthﬂ =2kl +(L1 ]

There can be many longitudinal modes lasing at the same time if the cavity mode spacing J4 is much

smaller than the DBR mirrors’ reflectivity bandwidths. Due can have only a single longitudinal mode
lasing in the cavity if 64 is equal to a larger than the reflectivity bandwidths of the DBR mirrors. We

have,

<< iéﬂ bandwidth.2* B bandwidth 1 }

Sn = T 2 2
P Lt Lo +Logro << 12| k | +[£J 2.1k |2 +[L£J

1

= Multiple longitudinal mode lasing. And,

T
Sp=———"—28p . S
L+Legrq+Lefro bandwidth,2’~ P bandwidth,1

= Single longitudinal mode lasing.
The spacing in frequency between the cavity longitudinal modes can be obtained as follows:
V4

T A
L+Lefr1+Lefr2

OB e T

ow L+Leff1 +Leff2
T

I L+Lefr1+Lofr2
In the same way, the reflectivity band widths of the DBR mirrors in frequency are:
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Single Mode Operation:
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Longitudinal mode selection (for lasing) in single mode DBR lasers can be understood as follows:
Suppose there are three longitudinal modes within the reflectivity bandwidth of the DBR mirrors (as
shown on the next page).

<insert figure>

The longitudinal mode in the center sees the highest reflectivity from the DBR mirrors and so has the
smallest value of the threshold gain Gy, . The two modes on either side of the center mode see lower
mirror reflectivities and, consequently, have higher threshold gains compared to the center mode.
When the laser is electrically pumped and the gain g becomes equal to the threshold gain gth of the
center mode, the center mode starts lasing. When the center mode starts lasing, the carrier density in
the gain region gets clamped to the value Ny, corresponding to the threshold gain §th of the center
mode. If the current is increased, further, the photon density in the center mode increases but the
carrier density remains fixed at Ny, . The gain of the active region also, therefore, remains fixed at the
threshold gain §th of the center mode. The gain of the active religion, therefore, never becomes large

enough so that the side modes can also large. In short, the clamping of the carrier density (and gain) at
the onset of the lasing of the center mode prevents the side modes (which have higher threshold gains)
from lasing.



