In this lecture you will learn:

- First and Second Order Time Independent Perturbation Theory in Quantum Mechanics

Werner Heisenberg (1901-1976)

Motivation: A Potential Well Problem

Consider a simple potential well:

Suppose one has found all the eigenvalues and the eigenstates by solving the Schrödinger equation:

\[-\frac{\hbar^2}{2m} \nabla^2 \phi(x) + V(x)\phi(x) = E\phi(x)\]

The eigenenergies are labeled as: \(e_n \) \(\{ n = 1,2,3,\ldots \}\)

The corresponding eigenstates are: \(\phi_n(x) \) or \(|\phi_n\rangle \) \(\{ n = 1,2,3,\ldots \}\)
Motivation: A Potential Well Problem

Eigenstates of a simple potential well are as depicted below:

The eigenenergies are labeled as: \(e_n \) \{ \(n = 1, 2, 3, \ldots \) \}

The corresponding eigenstates are: \(\phi_n(x) \) or \(|\phi_n\rangle \) \{ \(n = 1, 2, 3, \ldots \) \}

Motivation: Addition of a Small Perturbation

Now assume that a small perturbation is introduced in the potential:

\[
U(x) = V(x) + \Delta V(x)
\]

where \(U(x) \) is the total potential, \(V(x) \) is the original potential, and \(\Delta V(x) \) is the perturbation.
Motivation: Statement of the Problem

\[U(x) = V(x) + \Delta V(x) \]

How do we find the eigenstates and eigenenergies for the new potential \(U(x) \) ?

\[-\frac{\hbar^2}{2m} \nabla^2 \psi(x) + U(x) \psi(x) = E \psi(x) \]

Option: Start from scratch again and solve the Schrodinger equation to get:

The new eigenenergies, labeled as: \(E_n \) \(\{ n = 1, 2, 3, \ldots \} \)

and the corresponding eigenstates: \(\psi_n(x) \) or \(|\psi_n\rangle \) \(\{ n = 1, 2, 3, \ldots \} \)

Luckily, another simpler option is available

Time Independent Perturbation Theory

Lets generalize the potential well problem a little

Suppose for a Hamiltonian \(\hat{H}_0 \) we have solved the Schrodinger equation and obtained all the eigenenergies and eigenstates:

\[\hat{H}_0 |\phi_n\rangle = e_n |\phi_n\rangle \quad \{ n = 1, 2, 3, \ldots \} \quad \text{Orthonormality} \implies \langle \phi_n | \phi_p \rangle = \delta_{np} \]

We now want to obtain the eigenenergies and the eigenstates for the new Hamiltonian \(\hat{H} \) where \(\Delta \hat{H} \) has an added small perturbation,

\[\hat{H} = \hat{H}_0 + \Delta \hat{H} \quad \hat{H} |\psi_n\rangle = E_n |\psi_n\rangle \quad \{ n = 1, 2, 3, \ldots \} \]

Basic Assumption: If \(\Delta \hat{H} \) is not too large a perturbation, the new eigenenergies and eigenstates are likely close to the unperturbed values

Therefore assume:

Main idea: Use the old eigenstates to construct the new eigenstates

\[|\psi_n\rangle = |\phi_n\rangle + \sum_{m \neq n} c_m^n |\phi_m\rangle \]

Some small correction

\[E_n = e_n + \Delta e_n \]

Some small correction

\[\delta_{np} \Rightarrow \langle \phi_n | \phi_p \rangle \implies \delta_{np} \]

\[\langle \phi_n | \phi_p \rangle \implies \delta_{np} \]
A Note on the Correction Terms:

\[E_n = e_n + \Delta e_n \]

Correction

\[|\psi_n\rangle = |\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle \]

Correction

We expect that the correction terms can be expended in a series where each successive term is proportional to a higher power of \(\Delta H \). After all, the corrections should approach zero as the perturbation is made smaller, i.e. as \(\Delta H \rightarrow 0 \).

First Order Corrections to the Eigenenergies:

Take the expressions:

\[|\psi_n\rangle = |\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle \quad E_n = e_n + \Delta e_n \]

Plug them into the Schrödinger equation:

\[\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle \]

And multiply both sides from the left by the bra:

\[\langle \phi_n | (\hat{H} + \Delta \hat{H}) \left(|\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle \right) = \langle \phi_n | (e_n + \Delta e_n) \left(|\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle \right) \]

Note that the quantities \(\Delta c_m^n \) and \(\Delta e_n \), if non-zero, are proportional to some power of \(\Delta H \) that is equal to or greater than unity.

So, as a first order approximation, we keep only those terms in the equation above that are first order in the perturbation \(\Delta H \). This gives:

\[\Delta e_n = \langle \phi_n | \Delta \hat{H} |\phi_n\rangle \]

As expected, the first order correction to the eigenenergy is proportional to \(\Delta H \).

First Order Corrections to the Eigenstates:

Now take the expressions:

\[|\psi_n\rangle = |\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle \quad E_n = e_n + \Delta e_n \]

Plug them into the Schrödinger equation:

\[\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle \]

And multiply both sides from the left by the bra:

\[\langle \phi_p | (\hat{H} + \Delta \hat{H}) \left(|\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle \right) = \langle \phi_p | (e_n + \Delta e_n) \left(|\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle \right) \]
First Order Perturbation Theory

\[
\langle \phi_p | \left(\hat{H}_0 + \Delta \hat{H} \right) | \phi_n \rangle + \sum_{m \neq n} \Delta c_{mn}^n | \phi_m \rangle = \langle \phi_p | \left(e_n + \Delta e_n \right) | \phi_n \rangle + \sum_{m \neq n} \Delta c_{mn}^n | \phi_m \rangle
\]

Again, as a first order approximation, we keep only those terms in the equation above that are first order in the perturbation \(\Delta \hat{H} \). This gives,

\[
\Delta c_p^n = \frac{\langle \phi_p | \Delta \hat{H} | \phi_n \rangle}{e_n - e_p}
\]

Summing up the results obtained thus far, we can write the new eigenstates and eigenenergies in the presence of the perturbation as follows,

\[
E_n = e_n + \langle \phi_n | \Delta \hat{H} | \phi_n \rangle + \text{terms higher order in } \Delta \hat{H}
\]

\[
| \psi_n \rangle = | \phi_n \rangle + \sum_{m \neq n} \frac{\langle \phi_m | \Delta \hat{H} | \phi_n \rangle}{e_n - e_m} | \phi_m \rangle + \text{terms higher order in } \Delta \hat{H}
\]

Question: What if we want more accurate eigenenergies and/or eigenstates?

Answer: One can obtain corrections to arbitrary large powers in \(\Delta \hat{H} \)

Second Order Perturbation Theory

For many interesting perturbations the first order correction term to the energy vanishes, i.e.:

\[
\langle \phi_n | \Delta \hat{H} | \phi_n \rangle = 0
\]

For the above reason and/or also to obtain more accurate values of the eigenenergies, it is sometimes necessary to obtain corrections to the eigenenergies that are of second order in \(\Delta \hat{H} \)

Second Order Corrections to the Eigenenergies:

We take the expressions obtained that are accurate to first order in \(\Delta \hat{H} \):

\[
E_n = e_n + \langle \phi_n | \Delta \hat{H} | \phi_n \rangle + \Delta e_n
\]

\[
| \psi_n \rangle = | \phi_n \rangle + \sum_{m \neq n} \frac{\langle \phi_m | \Delta \hat{H} | \phi_n \rangle}{e_n - e_m} | \phi_m \rangle + \sum_{m \neq n} \Delta c_{mn}^n | \phi_m \rangle
\]

The terms containing \(\Delta c_{mn}^n \) and \(\Delta e_n \) now represent second order corrections.

We plug them into the Schrodinger equation: \(\hat{H} | \psi_n \rangle = E_n | \psi_n \rangle \)

And multiply both sides from the left by the bra: \(\langle \phi_n | \)
Second Order Perturbation Theory

\[
\langle \phi_n \rangle \left(\mathbf{H}_0 + \Delta \mathbf{H} \right) \left(\phi_n \right) + \sum_{m \neq n} \frac{\langle \phi_m | \Delta \mathbf{H} | \phi_n \rangle}{e_n - e_m} + \sum c_m^2 \left| \phi_m \right> = 0
\]

We keep only those terms in the equation above that are second order or first order in the perturbation \(\Delta \mathbf{H} \). The terms first order in \(\Delta \mathbf{H} \) cancel out (as they should since the solution we used was already accurate to the first order) and we get:

\[
\Delta e_n = \sum_{m \neq n} \frac{\left| \langle \phi_m | \Delta \mathbf{H} | \phi_n \rangle \right|^2}{e_n - e_m}
\]

The expression for the eigenenergies accurate to second order in \(\Delta \mathbf{H} \) is thus:

\[
E_n = e_n + \langle \phi_n | \Delta \mathbf{H} | \phi_n \rangle + \sum_{m \neq n} \frac{\left| \langle \phi_m | \Delta \mathbf{H} | \phi_n \rangle \right|^2}{e_n - e_m} + \text{terms of higher order in } \Delta \mathbf{H}
\]