Review Handout

Time Independent Perturbation Theory in Quantum Mechanics

In this lecture you will learn:

- First and Second Order Time Independent

Perturbation Theory in Quantum Mechanics

Werner Heisenberg (1901-1976)

Suppose one has found all the eigenvalues and the eigenstates by solving the Schrodinger equation:

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \phi(x)+V(x) \phi(x)=E \phi(x)
$$

The eigenenergies are labeled as: $e_{n} \quad\{n=1,2,3, \ldots \ldots$

The corresponding eigenstates are: $\phi_{n}(x)$ or $\left|\phi_{n}\right\rangle \quad\{n=1,2,3, \ldots \ldots$.

Motivation: A Potential Well Problem

Eigenstates of a simple potential well are as depicted below:

The eigenenergies are labeled as: $\quad e_{n} \quad\{n=1,2,3, \ldots \ldots$

The corresponding eigenstates are: $\quad \phi_{n}(x)$ or $\left|\phi_{n}\right\rangle \quad\{n=1,2,3, \ldots \ldots$

How do we find the eigenstates and eigenenergies for the new potential $U(x)$?

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(x)+U(x) \psi(x)=E \psi(x)
$$

Option: Start from scratch again and solve the Schrodinger equation to get:
The new eigenenergies, labeled as: $E_{n} \quad\{n=1,2,3, \ldots \ldots$
and the corresponding eigenstates: $\psi_{n}(x)$ or $\left|\psi_{n}\right\rangle \quad\{n=1,2,3, \ldots \ldots$

Luckily, another simpler option is available

Time Independent Perturbation Theory

Lets generalize the potential well problem a little
Suppose for a Hamiltonian \hat{H}_{o} we have solved the Schrodinger equation and obtained all the eigenenergies and eigenstates:

$$
\hat{H}_{0}\left|\phi_{n}\right\rangle=e_{n}\left|\phi_{n}\right\rangle \quad\left\{n=1,2,3, \ldots \ldots \quad \text { Orthonormality } \rightarrow\left\langle\phi_{n} \mid \phi_{p}\right\rangle=\delta_{n p}\right.
$$

We now want to obtain the eigenenergies and the eigenstates for the new hamiltonian \hat{H} where \hat{H} has an added small perturbation,

$$
\hat{H}=\hat{H}_{o}+\Delta \hat{H}
$$

$$
\hat{H}\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{\boldsymbol{n}}\right\rangle \quad\{n=1,2,3, \ldots \ldots
$$

Basic Assumption: If $\Delta \hat{H}$ is not too large a perturbation, the new eigenenergies and eigenstates are likely close to the unperturbed values

Therefore assume:

$$
\left.\begin{array}{c}
\left|\psi_{n}\right\rangle=\left|\phi_{n}\right\rangle+\underbrace{\sum_{m \neq n}^{\sum \Delta c_{m}^{n}}\left|\phi_{m}\right\rangle}_{\text {Some small correction }} \\
E_{n}=\mathbf{e}_{n}+\underbrace{\Delta \mathbf{e}_{\boldsymbol{n}}}_{\text {SCE } 4070 \text { - Spring } 2010 \text { - Farhan Rana - Cornell University }}
\end{array}\right\} \begin{aligned}
& \text { Main idea: Use the old } \\
& \text { eigenstates to construct the } \\
& \text { new eigenstates }
\end{aligned}
$$

First Order Perturbation Theory

A Note on the Correction Terms:

$$
E_{n}=\mathbf{e}_{n}+\underbrace{\Delta \mathbf{e}_{n}}_{\text {Correction }}
$$

$$
\left|\psi_{\boldsymbol{n}}\right\rangle=\left|\phi_{\boldsymbol{n}}\right\rangle+\underbrace{\sum_{m \neq n} \Delta c_{\boldsymbol{m}}^{\boldsymbol{n}}\left|\phi_{\boldsymbol{m}}\right\rangle}_{\text {Correction }}
$$

We expect that the correction terms can be expended in a series where each successive term is proportional to a higher power of $\Delta \boldsymbol{H}$. After all, the corrections should approach zero as the perturbation is made smaller, i.e. as $\Delta \hat{H} \rightarrow 0$

First Order Corrections to the Eigenenergies:
Take the expressions: $\left|\psi_{\boldsymbol{n}}\right\rangle=\left|\phi_{\boldsymbol{n}}\right\rangle+\sum_{m \neq \boldsymbol{n}} \Delta c_{\boldsymbol{m}}^{\boldsymbol{n}}\left|\phi_{\boldsymbol{m}}\right\rangle \quad E_{\boldsymbol{n}}=\mathbf{e}_{\boldsymbol{n}}+\Delta \mathbf{e}_{\boldsymbol{n}}$
Plug them into the Schrodinger equation: $\quad \hat{\boldsymbol{H}}\left|\psi_{\boldsymbol{n}}\right\rangle=\boldsymbol{E}_{\boldsymbol{n}}\left|\psi_{\boldsymbol{n}}\right\rangle$
And multiply both sides from the left by the bra: $\left\langle\boldsymbol{\phi}_{\boldsymbol{n}}\right|$

$$
\left\langle\phi_{n}\left(\hat{H}_{o}+\Delta \hat{H}\right)\left(\left|\phi_{n}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle\right)=\left\langle\phi_{n}\right|\left(e_{n}+\Delta e_{n}\right)\left(\left|\phi_{n}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle\right)\right.
$$

$$
\begin{aligned}
& \text { First Order Perturbation Theory } \\
& \left\langle\phi_{n}\right|\left(\hat{H}_{o}+\Delta \hat{H}\right)\left(\left|\phi_{n}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle\right)=\left\langle\phi_{n}\right|\left(e_{n}+\Delta e_{n}\right)\left(\left|\phi_{n}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle\right)
\end{aligned}
$$

Note that the quantities ΔC_{m}^{n} and Δe_{n}, if non-zero, are proportional to some power of $\Delta \hat{H}$ that is equal to or greater than unity

So, as a first order approximation, we keep only those terms in the equation above that are first order in the perturbation $\Delta \hat{H}$. This gives,

$$
\Delta e_{n}=\left\langle\phi_{n}\right| \Delta \hat{H}\left|\phi_{n}\right\rangle
$$

As expected, the first order correction to the eigenenergy is proportional to $\Delta \hat{H}$
First Order Corrections to the Eigenstates:
Now take the expressions: $\left|\psi_{n}\right\rangle=\left|\phi_{n}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle \quad E_{n}=e_{n}+\Delta e_{n}$
Plug them into the Schrodinger equation: $\hat{\boldsymbol{H}}\left|\psi_{\boldsymbol{n}}\right\rangle=E_{\boldsymbol{n}}\left|\psi_{\boldsymbol{n}}\right\rangle$
And multiply both sides from the left by the bra: $\left\langle\phi_{\boldsymbol{p}}\right| \quad(p \neq n)$

$$
\left\langle\phi_{p}\right|\left(\hat{H}_{o}+\Delta \hat{H}\right)\left(\left|\phi_{n}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle\right)=\left\langle\phi_{p}\right|\left(e_{n}+\Delta e_{n}\right)\left(\left|\phi_{n}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle\right)
$$

First Order Perturbation Theory

$$
\left\langle\phi_{p}\right|\left(\hat{H}_{o}+\Delta \hat{H}\right)\left(\left|\phi_{n}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle\right)=\left\langle\phi_{p}\right|\left(e_{n}+\Delta e_{n}\right)\left(\left|\phi_{n}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle\right)
$$

Again, as a first order approximation, we keep only those terms in the equation above that are first order in the perturbation $\Delta \hat{H}$. This gives,

$$
\Delta c_{p}^{n}=\frac{\left\langle\phi_{p}\right| \Delta \hat{H}\left|\phi_{n}\right\rangle}{e_{n}-e_{p}}
$$

Summing up the results obtained thus far, we can write the new eigenstates and eigenenergies in the presence of the perturbation as follows,

$$
\begin{aligned}
& E_{n}=e_{n}+\left\langle\phi_{\boldsymbol{n}}\right| \Delta \hat{H}\left|\phi_{n}\right\rangle+\text { terms higher order in } \Delta \hat{H} \\
& \left|\psi_{n}\right\rangle=\left|\phi_{n}\right\rangle+\sum_{m \neq n} \frac{\left\langle\phi_{m}\right| \Delta \hat{H}\left|\phi_{n}\right\rangle}{\mathbf{e}_{\boldsymbol{n}}-\mathbf{e}_{\boldsymbol{m}}}\left|\phi_{m}\right\rangle+\text { terms higher order in } \Delta \hat{H}
\end{aligned}
$$

Question: What if we want more accurate eiegenenergies and/or eigenstates?
Answer: One can obtain corrections to arbitrary large powers in $\Delta \hat{\boldsymbol{H}}$

Second Order Perturbation Theory

For many interesting perturbations the first order correction term to the energy vanishes, i.e.:

$$
\left\langle\phi_{\boldsymbol{n}}\right| \Delta \hat{H}\left|\phi_{\boldsymbol{n}}\right\rangle=0
$$

For the above reason and/or also to obtain more accurate values of the eigenenergies, it is sometimes necessary to obtain corrections to the eigenenergies that are of second order in $\Delta \hat{H}$

Second Order Corrections to the Eigenenergies:
We take the expressions obtained that are accurate to first order in $\Delta \hat{H}$:

$$
\begin{aligned}
E_{n} & =e_{n}+\left\langle\phi_{n}\right| \Delta \hat{H}\left|\phi_{n}\right\rangle+\Delta e_{n} \\
\left|\psi_{n}\right\rangle & =\left|\phi_{n}\right\rangle+\sum_{m \neq n} \frac{\left\langle\phi_{m}\right| \Delta \hat{H}\left|\phi_{n}\right\rangle}{e_{n}-e_{m}}\left|\phi_{m}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle
\end{aligned}
$$

The terms containing Δc_{m}^{n} and Δe_{n} now represent second order corrections We plug them into the Schrodinger equation: $\hat{H}\left|\psi_{\boldsymbol{n}}\right\rangle=E_{\boldsymbol{n}}\left|\psi_{\boldsymbol{n}}\right\rangle$
And multiply both sides from the left by the bra: $\left\langle\phi_{\boldsymbol{n}}\right|$

$$
\begin{aligned}
& \text { Second Order Perturbation Theory } \\
& \left\langle\phi_{n}\right|\left(\hat{H}_{o}+\Delta \hat{H}\right)\left(\left|\phi_{n}\right\rangle+\sum_{m \neq n} \frac{\left\langle\phi_{m}\right| \Delta \hat{H}\left|\phi_{n}\right\rangle}{e_{n}-e_{m}}\left|\phi_{m}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle\right)= \\
& \left.\left\langle\phi_{n}\right| e_{n}+\left\langle\phi_{n}\right| \Delta \hat{H}\left|\phi_{n}\right\rangle+\Delta e_{n}\right)\left(\left|\phi_{n}\right\rangle+\sum_{m \neq n} \frac{\left\langle\phi_{m}\right| \Delta \hat{H}\left|\phi_{n}\right\rangle}{e_{n}-e_{m}}\left|\phi_{m}\right\rangle+\sum_{m \neq n} \Delta c_{m}^{n}\left|\phi_{m}\right\rangle\right)
\end{aligned}
$$

We keep only those terms in the equation above that are second order or first order in the perturbation $\Delta \hat{H}$. The terms first order in $\Delta \hat{H}$ cancel out (as they should since the solution we used was already accurate to the first order) and we get:

$$
\Delta \boldsymbol{e}_{n}=\sum_{m \neq n} \frac{\left.\left|\left\langle\phi_{m}\right| \Delta \hat{H}\right| \phi_{n}\right\rangle\left.\right|^{2}}{\boldsymbol{e}_{\boldsymbol{n}}-\boldsymbol{e}_{\boldsymbol{m}}}
$$

The expression for the eigenenergies accurate to second order in $\Delta \hat{H}$ is thus:

$$
E_{n}=e_{n}+\left\langle\phi_{n}\right| \Delta \hat{H}\left|\phi_{n}\right\rangle+\sum_{m \neq n} \frac{\left.\left|\left\langle\phi_{m}\right| \Delta \hat{H}\right| \phi_{n}\right\rangle\left.\right|^{2}}{e_{n}-e_{m}}+\text { terms of higher order in } \Delta \hat{H}
$$

