Handout 9

Application of LCAO to Energy Bands in Solids and the Tight Binding Method

In this lecture you will learn:

- An approach to energy bands in solids using LCAO and the tight binding method

Example: A 1D Crystal with 1 Orbital per Primitive Cell

Each atom has the energy levels as shown

- The electrons in the lowest energy level(s) are well localized and do not take part in bonding with neighboring atoms
- The electrons in the outermost s-orbital
 participate in bonding
The crystal has the Hamiltonian: $\quad \hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+\sum_{m} V_{a}\left(\vec{r}-\vec{R}_{m}\right)$

Tight Binding Approach for a 1D Crystal

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+\sum_{m} V_{a}\left(\vec{r}-\vec{R}_{m}\right) \quad \longrightarrow \text { Periodic potential }
$$

We assume that the solution is of the LCAO form: $\psi(\vec{r})=\sum_{m} c_{m} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)$
And assume that orbitals on different atoms are approx. orthogonal:

$$
\left\langle\phi_{s}\left(\vec{r}-\vec{R}_{n}\right) \mid \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)\right\rangle=\delta_{n m}
$$

- If we have \boldsymbol{N} atoms in the lattice, then our solution is made up of \boldsymbol{N} different sorbitals that are sitting on the N atoms
- In principle one can take the assumed solution, as written above, plug it in the Schrodinger equation, get an $N \times N$ matrix and solve it (just as we did in the case of molecules). But one can do better \qquad

We know from Bloch's theorem that the solution must satisfy the following:

$$
\begin{gathered}
\psi(\vec{r}+\vec{R})^{2}=\psi(\vec{r})^{2} \\
\psi(\vec{r}+\vec{R})=e^{i \vec{k} \cdot k} \psi(\vec{r})
\end{gathered}
$$

Consideration 1:
For the solution: $\psi(\vec{r})=\sum_{m} c_{m} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)$
to satisfy:
to satisfy:

$$
\mid \psi(\vec{r}+\bar{R})^{2}=\psi(\bar{r})^{2}
$$

one must have the same value of $\left|c_{m}\right|^{2}$ for all m (i.e. all coefficients must have the same weight).
So we can write without loosing generality: $\quad c_{m}=\frac{e^{i \theta_{m}}}{\sqrt{N}} \longrightarrow \int|\psi(\vec{r})|^{2} d^{3} \vec{r}=1$

Consideration 2:
For the solution:

$$
\psi(\vec{r})=\sum_{m} \frac{e^{i \theta_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)
$$

$$
\psi(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \vec{R}} \psi(\vec{r})
$$

one must have the phase value equal to: $\theta_{m}=\vec{k} \cdot \vec{R}_{m}$

Consideration 2 (contd...):
Proof:

$$
\psi(\vec{r})=\sum_{m} \frac{e^{i \theta_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)=\sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)
$$

For the Bloch condition we get:

$$
\psi(\vec{r}+\vec{R})=\sum_{m} \frac{\mathrm{e}^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}+\vec{R}-\bar{R}_{m}\right)=\sum_{m} \frac{\mathrm{e}^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\left(\vec{R}_{m}-\vec{R}\right)\right)
$$

Let:

$$
\vec{R}_{m}-\vec{R}=\vec{R}_{p}
$$

$$
\begin{aligned}
\Rightarrow \psi(\vec{r}+\vec{R}) & =\sum_{p} \frac{e^{i k \cdot\left(\vec{R}_{p}+\vec{R}\right)}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{p}\right)=e^{i \vec{k} \cdot \vec{R}^{\prime}} \sum_{p} \frac{e^{i \vec{k} \cdot \vec{R}_{p}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{p}\right) \\
& =\mathrm{e}^{i \vec{k} \cdot \vec{R}} \psi(\vec{r})
\end{aligned}
$$

Tight Binding Approach for a 1D Crystal

So we can write the solution as:

$$
\psi_{\vec{k}}(\vec{r})=\sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)
$$

And we know that it is a Bloch function because:

$$
\psi_{\vec{k}}(\vec{r}+\vec{R})=\mathrm{e}^{i \vec{k} \cdot \vec{R}^{\prime}} \psi_{\vec{k}}(\vec{r})
$$

All that remains to be found is the energy of this solution - so we plug it into the Schrodinger equation:

$$
\begin{gathered}
\hat{H}\left|\psi_{\vec{k}}(\vec{r})\right\rangle=E(\vec{k})\left|\psi_{\vec{k}}(\vec{r})\right\rangle \\
\Rightarrow \sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \hat{H}\left|\phi_{s}\left(\vec{r}-\vec{R}_{m}\right)\right\rangle=E(\vec{k}) \sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}}\left|\phi_{s}\left(\vec{r}-\vec{R}_{m}\right)\right\rangle
\end{gathered}
$$

$$
\Rightarrow \sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}} \hat{H}\left|\phi_{s}\left(\vec{r}-\vec{R}_{m}\right)\right\rangle=E(\vec{k}) \sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}}\left|\phi_{s}\left(\vec{r}-\vec{R}_{m}\right)\right\rangle
$$

Multiply this equation with $\left\langle\phi_{S}(\vec{r})\right|$ and:

- keep the energy matrix elements for orbitals that are nearest neighbors and
- assume that the orbitals on different atoms are orthogonal

$$
\begin{aligned}
& \frac{e^{i \vec{k} \cdot \vec{R}_{1}}}{\sqrt{N}}\left\langle\phi_{s}(\vec{r})\right| \hat{H}\left|\phi_{s}\left(\vec{r}-\vec{R}_{1}\right)\right\rangle+\frac{1}{\sqrt{N}}\left\langle\phi_{s}(\vec{r})\right| \hat{H}\left|\phi_{s}(\vec{r})\right\rangle+\frac{e^{i \vec{k} \cdot \vec{R}_{-1}}}{\sqrt{N}}\left\langle\phi_{s}(\vec{r})\right| \hat{H}\left|\phi_{s}\left(\vec{r}-\vec{R}_{-1}\right)\right\rangle \\
& =E(\vec{k}) \frac{1}{\sqrt{N}}\left\langle\phi_{s}(\vec{r}) \mid \phi_{s}(\vec{r})\right\rangle \\
& \Rightarrow-V_{s s \sigma} \frac{e^{i \vec{k} \cdot \vec{a}_{1}}}{\sqrt{N}}+\frac{1}{\sqrt{N}} E_{s}-\frac{e^{-i \vec{k} \cdot \vec{a}_{1}}}{\sqrt{N}} V_{s s \sigma}=E(\vec{k}) \frac{1}{\sqrt{N}} \\
& \Rightarrow E(\vec{k})=E_{s}-2 V_{s s \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right)
\end{aligned}
$$

Tight Binding vs NFEA for a 1D Crystal

LCAO - Tight Binding
$E(\vec{k})=E_{s}-2 V_{s s \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right)$

Nearly Free Electron Approach (NFEA)

The energy matrix elements are of the order of: $V_{s s \sigma} \sim \frac{\hbar^{2}}{m} \frac{1}{a^{2}}$

Example: A 1D Crystal with 2 Orbitals per Primitive Cell

Each atoms now has a s-orbital and a p-orbital that contributes to energy band formation

$$
\begin{array}{ll}
\phi_{s}(\vec{r}) & \rightarrow E_{s} \\
\phi_{p}(\vec{r}) & \rightarrow E_{p}
\end{array}
$$

We write the solution in the form:

$$
\psi_{\bar{k}}(\vec{r})=\sum_{m} \frac{e^{i \vec{k} \cdot \vec{R}_{m}}}{\sqrt{N}}\left[c_{s}(\bar{k}) \phi_{s}\left(\vec{r}-\vec{R}_{m}\right)+c_{p}(\vec{k}) \phi_{p}\left(\vec{r}-\vec{R}_{m}\right)\right]
$$

Verify that it satisfies: $\quad \psi_{\vec{k}}(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \vec{R}^{\prime}} \psi_{\vec{k}}(\vec{r})$
And plug it into the Schrodinger equation:

$$
\hat{H}\left|\psi_{\vec{k}}(\vec{r})\right\rangle=E(\vec{k})\left|\psi_{\vec{k}}(\vec{r})\right\rangle
$$

Step 1:
Multiply the equation with $\left\langle\phi_{s}(\vec{r})\right|$ and:

- keep the energy matrix elements for orbitals that are nearest neighbors and
- assume that the orbitals on different atoms are orthogonal

$$
\left[E_{s}-2 V_{s s \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right)\right] c_{s}(\bar{k})+2 i V_{s p \sigma} \sin \left(\vec{k} \cdot \vec{a}_{1}\right) c_{p}(\vec{k})=E(\vec{k}) c_{s}(\vec{k})
$$

Step 2:
Multiply the equation with $\left\langle\phi_{p}(\vec{r})\right.$ and:

- keep the energy matrix elements for orbitals that are nearest neighbors and
- assume that the orbitals on different atoms are orthogonal

$$
\left[E_{p}+2 V_{p p \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right)\right] c_{p}(\vec{k})-2 i V_{s p \sigma} \sin \left(\vec{k} \cdot \vec{a}_{1}\right) c_{s}(\vec{k})=E(\vec{k}) c_{p}(\vec{k})
$$

Tight Binding Approach for a 1D Crystal

We can write the two equations in matrix form:

$$
\left[\begin{array}{cc}
E_{s}-2 V_{s s \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right) & 2 i V_{s p \sigma} \sin \left(\vec{k} \cdot \vec{a}_{1}\right) \\
-2 i V_{s p \sigma} \sin \left(\vec{k} \cdot \vec{a}_{1}\right) & E_{p}+2 V_{p p \sigma} \cos \left(\vec{k} \cdot \vec{a}_{1}\right)
\end{array}\right]\left[\begin{array}{l}
c_{s}(\vec{k}) \\
c_{p}(\vec{k})
\end{array}\right]=E(\vec{k})\left[\begin{array}{l}
c_{s}(\vec{k}) \\
c_{p}(\vec{k})
\end{array}\right]
$$

For each value of wavevector one obtains two eigenvalues - corresponding to two energy bands

For $\overrightarrow{\boldsymbol{k}}=\mathbf{0}$ we get:

$$
E(\vec{k}=0)=E_{p}+2 V_{p p \sigma}
$$

$$
\left[\begin{array}{l}
c_{s}(\vec{k}=0) \\
c_{p}(\vec{k}=0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$$
E(\vec{k}=0)=E_{s}-2 V_{s s \sigma}
$$

$$
\left[\begin{array}{l}
c_{s}(\vec{k}=0) \\
c_{p}(\vec{k}=0)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Tight Binding Approach for a 1D Crystal

For $\overrightarrow{\boldsymbol{k}}=\frac{\boldsymbol{\pi}}{\mathbf{2 a}} \hat{\boldsymbol{x}}$ we get:

$$
\begin{aligned}
& E\left(\vec{k}=\frac{\pi}{2 a} \hat{x}\right)=? \\
& {\left[\begin{array}{l}
c_{s}\left(\vec{k}=\frac{\pi}{2 a} \hat{x}\right) \\
c_{p}\left(\vec{k}=\frac{\pi}{2 a} \hat{x}\right)
\end{array}\right]=\left[\begin{array}{l}
? \\
?
\end{array} \begin{array}{l}
\begin{array}{l}
\text { Bloch function is made } \\
\text { of both s-and p-orbitals }
\end{array}
\end{array}\right.} \\
& E\left(\vec{k}=\frac{\pi}{2 a}\right)=?
\end{aligned}
$$

$$
\left[\begin{array}{c}
c_{s}\left(\vec{k}=\frac{\pi}{2 a} \hat{x}\right) \\
c_{p}\left(\vec{k}=\frac{\pi}{2 a} \hat{x}\right)
\end{array}\right]=\left[\begin{array}{l}
? \\
?
\end{array}\right] \begin{aligned}
& \text { Bloch function is made } \\
& \text { of both } s \text {-and } p \text {-orbitals }
\end{aligned}
$$

Tight Binding Approach for a 1D Crystal

For $\overrightarrow{\boldsymbol{k}}=\frac{\pi}{a} \hat{\boldsymbol{x}}$ we get:

$$
\left.\begin{array}{l}
E\left(\vec{k}=\frac{\pi}{a} \hat{x}\right)=E_{p}-2 V_{p p \sigma} \\
{\left[\begin{array}{l}
c_{s}\left(\vec{k}=\frac{\pi}{a} \hat{x}\right) \\
c_{p}\left(\vec{k}=\frac{\pi}{a} \hat{x}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \begin{array}{l}
\text { Bloch function is made } \\
\text { of only p-orbitals }
\end{array}}
\end{array}\right] \begin{aligned}
& E\left(\vec{k}=\frac{\pi}{a} \hat{x}\right)=E_{s}+2 V_{s s \sigma}
\end{aligned}
$$

$$
\left[\begin{array}{l}
c_{s}\left(\vec{k}=\frac{\pi}{a} \hat{x}\right) \\
c_{p}\left(\vec{k}=\frac{\pi}{a} \hat{x}\right)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \begin{aligned}
& \text { Bloch function is made } \\
& \text { of only s-orbitals }
\end{aligned}
$$

