Handout 7

Properties of Bloch States and Electron

 Statistics in Energy BandsIn this lecture you will learn:

- Properties of Bloch functions
- Periodic boundary conditions for Bloch functions
- Density of states in k-space
- Electron occupation statistics in energy bands

Bloch Functions - Summary

- Electron energies and solutions are written as ($\overrightarrow{\boldsymbol{k}}$ is restricted to the first BZ):

$$
\psi_{n, \vec{k}}(\vec{r}) \quad \text { and } \quad E_{n}(\vec{k})
$$

- The solutions satisfy the Bloch's theorem:

$$
\psi_{n, \vec{k}}(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \vec{R}} \psi_{n, \vec{k}}(\vec{r})
$$

and can be written as a superposition of plane waves, as shown below for 3D:

$$
\psi_{n, \vec{k}}(\vec{r})=\sum_{j} c_{n}\left(\vec{k}+\vec{G}_{j}\right) \sqrt{\frac{1}{V}} e^{i\left(\vec{k}+\vec{G}_{j}\right) \cdot \vec{r}}
$$

- Any lattice vector and reciprocal lattice vector can be written as:

$$
\vec{R}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3} \quad \vec{G}=m_{1} \vec{b}_{1}+m_{2} \vec{b}_{2}+m_{3} \vec{b}_{3}
$$

- Volume of the direct lattice primitive cell and the reciprocal lattice first BZ are:

$$
\Omega_{3}=\left|\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)\right| \quad \Pi_{3}=\left|\vec{b}_{1} \cdot\left(\vec{b}_{2} \times \vec{b}_{3}\right)\right|
$$

Bloch Function - Product Form Expression

A Bloch function corresponding to the wavevector \vec{k} and energy band " n " can always be written as superposition over plane waves in the form:

$$
\psi_{n, \vec{k}}(\vec{r})=\sum_{j} c_{n}\left(\vec{k}+\vec{G}_{j}\right) \sqrt{\frac{1}{V}} \mathrm{e}^{i\left(\vec{k}+\vec{G}_{j}\right) \cdot \vec{r}}
$$

The above expression can be re-written as follows:

$$
\begin{aligned}
\psi_{n, \vec{k}}(\vec{r}) & =e^{i \vec{k} \cdot \vec{r}} \sum_{j} c_{n}\left(\vec{k}+\vec{G}_{j}\right) \sqrt{\frac{1}{V}} e^{i \vec{G}_{j} \cdot \vec{r}} \\
& =\sqrt{\frac{1}{V}} e^{i \vec{k} \cdot \vec{r}} \sum_{j} c_{n, \vec{k}}\left(\vec{G}_{j}\right) \mathrm{e}^{i \vec{G}_{j} \cdot \vec{r}} \\
& =\sqrt{\frac{1}{V}} e^{i \vec{k} \cdot \vec{r}} u_{n, \vec{k}}(\vec{r})
\end{aligned}
$$

Where the function $u_{\boldsymbol{n}, \overrightarrow{\boldsymbol{k}}}(\vec{r})$ is lattice periodic:

$$
\begin{aligned}
u_{n, \vec{k}}(\vec{r}+\vec{R}) & =\sum_{j} c_{n, \vec{k}}\left(\vec{G}_{j}\right) \mathrm{e}^{i \vec{G}_{j} \cdot(\vec{r}+\vec{R})}=\sum_{j} c_{n, \vec{k}}\left(\vec{G}_{j}\right) \mathrm{e}^{i \vec{G}_{j} \cdot \vec{r}} \\
& =u_{n, \vec{k}}(\vec{r})
\end{aligned}
$$

Note that: $\psi_{n, \vec{k}}(\vec{r})=\sqrt{\frac{1}{V}} e^{i \vec{k} \cdot \vec{r}} u_{n, \vec{k}}(\vec{r}) \xrightarrow[\text { ECE } 407 \text { - Spring 2009 - Farhan Rana - Cornell University }]{\text { Satisfies }}\left\{\begin{array}{l}\psi_{n, \vec{k}}(\vec{r}+\vec{R}) \\ =e^{i \vec{k} \cdot \vec{R}} \psi_{n, \vec{k}}(\vec{r})\end{array}\right.$

Allowed Wavevectors for Free-Electrons (Sommerfeld Model)

We used periodic boundary conditions:

$$
\begin{aligned}
& \psi\left(x+L_{x}, y, z\right)=\psi(x, y, z) \\
& \psi\left(x, y+L_{y}, z\right)=\psi(x, y, z) \\
& \psi\left(x, y, z+L_{z}\right)=\psi(x, y, z)
\end{aligned}
$$

The boundary conditions dictate that the allowed values of k_{x}, k_{y}, and k_{z}, are such that:

$$
\begin{array}{lll}
e^{i\left(k_{x} L_{x}\right)}=1 & \Rightarrow & k_{x}=n \frac{2 \pi}{L_{x}} \\
\mathrm{e}^{i\left(k_{y} L_{y}\right)}=1 & \Rightarrow & k_{y}=m \frac{2 \pi}{L_{y}} \\
\mathrm{e}^{i\left(k_{z} L_{z}\right)}=1 & \Rightarrow & k_{z}=p \frac{2 \pi}{L_{z}}
\end{array}\left[\begin{array}{l}
n=0, \pm 1, \pm 2, \ldots \\
m=0, \pm 1, \pm 2, \ldots \\
p=0, \pm 1, \pm 2, \ldots
\end{array}\right]
$$

Bloch Functions - Periodic Boundary Conditions

Direct lattice
-

- - -

Reciprocal lattice for a 2D lattice

- Any vector $\overrightarrow{\boldsymbol{k}}$ in the first BZ can be written as:

$$
\vec{k}=\alpha_{1} \vec{b}_{1}+\alpha_{2} \vec{b}_{2}+\alpha_{3} \vec{b}_{3}
$$

where α_{1}, α_{2}, and α_{3} range from $-1 / 2$ to $+1 / 2$:

$$
-\frac{1}{2}<\alpha_{1} \leq \frac{1}{2} \quad-\frac{1}{2}<\alpha_{2} \leq \frac{1}{2} \quad-\frac{1}{2}<\alpha_{3} \leq \frac{1}{2}
$$

Bloch Functions - Periodic Boundary Conditions

- Consider a 3D crystal made up of N_{1} primitive cells in the \vec{a}_{1} direction, N_{2} primitive cells in the \vec{a}_{2} direction and N_{3} primitive cells in the \vec{a}_{3} direction
\Rightarrow Volume of the entire crystal is: $\quad V=\left|N_{1} \vec{a}_{1} \cdot\left(N_{2} \vec{a}_{2} \times N_{3} \vec{a}_{3}\right)\right|=N_{1} N_{2} N_{3} \Omega_{3}$
Assuming periodic boundary conditions in all three directions we must have:

$$
\begin{aligned}
& \psi\left(\vec{r}+N_{1} \vec{a}_{1}\right)=e^{i \vec{k} \cdot N_{1} a_{1}} \psi(\vec{r})=\psi(\vec{r}) \\
& \psi\left(\vec{r}+N_{2} \vec{a}_{2}\right)=e^{i \vec{k} \cdot N_{2} \vec{a}_{2}} \psi(\vec{r})=\psi(\vec{r}) \\
& \psi\left(\vec{r}+N_{3} \overrightarrow{\mathrm{a}}_{3}\right)=\mathrm{e}^{i \vec{k} \cdot N_{3} \overrightarrow{\mathrm{a}}_{3}} \psi(\vec{r})=\psi(\vec{r})
\end{aligned}
$$

Bloch Functions - Periodic Boundary Conditions

The periodic boundary condition in the \vec{a}_{1} direction implies:
$\Rightarrow e^{i \vec{k} \cdot N_{1} \vec{a}_{1}}=1 \quad\left\{\vec{k}=\alpha_{1} \vec{b}_{1}+\alpha_{2} \vec{b}_{2}+\alpha_{3} \vec{b}_{3}\right.$
$\Rightarrow \vec{k} \cdot N_{1} \vec{a}_{1}=2 \pi m_{1} \quad\left\{m_{1}\right.$ is an integer
$\Rightarrow 2 \pi \alpha_{1} N_{1}=2 \pi m_{1} \quad\left\{r e c a l l\right.$ that : $\vec{a}_{j} \cdot \vec{b}_{k}=2 \pi \delta_{j k}$
$\Rightarrow \alpha_{1}=\frac{m_{1}}{N_{1}}$

Reciprocal lattice for a 2D lattice

Since: $-\frac{1}{2}<\alpha_{1} \leq \frac{1}{2} \quad \Rightarrow-\frac{N_{1}}{2}<m_{1} \leq \frac{N_{1}}{2}$
$\Rightarrow m_{1}$ can have N_{1} different integral values between $-N_{1} / 2$ and $+N_{1} / 2$

Bloch Functions - Periodic Boundary Conditions

 Similarly, the periodic boundary conditions in the directions of $\vec{a}_{\mathbf{2}}$ and \vec{a}_{3} imply:$\Rightarrow e^{i \vec{k} \cdot N_{2} \vec{a}_{2}}=1$
\& $\quad e^{i \vec{k} \cdot N_{3} \vec{a}_{3}}=1$
$\Rightarrow \vec{k} \cdot N_{2} \vec{a}_{2}=2 \pi m_{2}$
\&
$\vec{k} \cdot N_{3} \overrightarrow{\mathrm{a}}_{3}=2 \pi \mathrm{~m}_{3}$
$\Rightarrow \alpha_{2}=\frac{m_{2}}{N_{2}}$
$\& \quad \alpha_{3}=\frac{m_{3}}{N_{3}}$
$\Rightarrow \quad-\frac{N_{2}}{2}<m_{2} \leq \frac{N_{2}}{2} \quad \& \quad-\frac{N_{3}}{2}<m_{3} \leq \frac{N_{3}}{2}$
Reciprocal lattice for a 2D lattice
$\Rightarrow m_{1}$ can have N_{1} different integral values
$\Rightarrow m_{2}$ can have N_{2} different integral values
$\Rightarrow m_{3}$ can have N_{3} different integral values
Since any k-vector in the $F B Z$ is given as:

$$
\vec{k}=\alpha_{1} \vec{b}_{1}+\alpha_{2} \vec{b}_{2}+\alpha_{3} \vec{b}_{3}
$$

\Rightarrow there are $N_{1} N_{2} N_{3}$ different allowed k-values in the FBZ
\Rightarrow There are as many different allowed k -values in the FBZ as the number of primitive cells in the crystal

- - -

Direct lattice

Density of States in k-Space

Reciprocal lattice for a 2D lattice

$$
\vec{k}=\alpha_{1} \vec{b}_{1}+\alpha_{2} \vec{b}_{2}+\alpha_{3} \vec{b}_{3}
$$

$$
\alpha_{1}=\frac{m_{1}}{N_{1}} \quad\left\{-\frac{N_{1}}{2}<m_{1} \leq \frac{N_{1}}{2}\right.
$$

$$
\alpha_{2}=\frac{m_{2}}{N_{2}} \quad\left\{-\frac{N_{2}}{2}<m_{2} \leq \frac{N_{2}}{2}\right.
$$

$$
\alpha_{3}=\frac{m_{3}}{N_{3}} \quad\left\{-\frac{N_{3}}{2}<m_{3} \leq \frac{N_{3}}{2}\right.
$$

Question: Since $\overrightarrow{\boldsymbol{k}}$ is allowed to have only discrete values, how many allowed k-values are there per unit volume of the k -space?

3D Case:
Volume of the first BZ is:

$$
\Pi_{3}=\left|\vec{b}_{1} \cdot\left(\vec{b}_{2} \times \vec{b}_{3}\right)\right|
$$

- In this volume, there are $N_{1} N_{2} N_{3}$ allowed k -values
- The number of allowed k-values per unit volume in k-space are:

$$
\begin{aligned}
& =\frac{N_{1} N_{2} N_{3}}{\Pi_{3}} \\
& =N_{1} N_{2} N_{3} \frac{\Omega_{3}}{(2 \pi)^{3}} \\
& =\frac{V}{(2 \pi)^{3}}
\end{aligned}
$$

where V is the volume of the crystal

Density of States in k-Space

1D Case:
Length of the crystal: $L=N_{1}\left|\vec{a}_{1}\right|=N_{1} \Omega_{1}$

Length of the first $B Z$ is: $\Pi_{1}=\left|\vec{b}_{1}\right|=\frac{2 \pi}{\Omega_{1}}$

- In the first BZ, there are N_{1} allowed k-values
- The number of allowed k-values per unit length in k -space are:

$$
=\frac{N_{1}}{\Pi_{1}}=N_{1} \frac{\Omega_{1}}{(2 \pi)^{1}}=\frac{L}{(2 \pi)}
$$

2D Case:
Area of the crystal: $A=\left|N_{1} \vec{a}_{1} \times N_{2} \vec{a}_{2}\right|=N_{1} N_{2} \Omega_{2}$
Area of the first BZ is: $\Pi_{2}=\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\frac{(2 \pi)^{2}}{\Omega_{2}}$

- In the first BZ, there are $N_{1} N_{2}$ allowed k-values
- The number of allowed k-values per unit area in
k-space are:

$$
=\frac{N_{1} N_{2}}{\Pi_{2}}=N_{1} N_{2} \frac{\Omega_{2}}{(2 \pi)^{2}}=\frac{A}{(2 \pi)^{2}}
$$

States in k-Space and Number of Primitive Cells

1D Case:

Reciprocal lattice is

-

Length of the crystal: $L=N_{1}\left|\vec{a}_{1}\right|=N_{1} \Omega_{1}=N_{1}$ a Length of the first $B Z$ is: $\Pi_{1}=\left|\vec{b}_{1}\right|=\frac{2 \pi}{a}$

- In the first BZ, there are \boldsymbol{N}_{1} allowed k -values
- The number of allowed k-values per unit length in k-space are:

$$
=\frac{N_{1}}{\Pi_{1}}=N_{1} \frac{\Omega_{1}}{(2 \pi)^{1}}=\frac{L}{(2 \pi)}
$$

There are \boldsymbol{N}_{1} allowed k -values in k -space \Rightarrow There are N_{1} allowed k -values per energy band \Rightarrow There are as many allowed k -values per energy band as the
 number of primitive cells in the entire crystal

Statistics of Electrons in Energy Bands

Suppose I want to find the total number of electrons in the n-th band - how should I find it?

The probability that the quantum state of wavevector $\overrightarrow{\boldsymbol{k}}$ is in the n -th energy band is occupied by an electron is given by the Fermi-Dirac distribution:

$$
f_{n}(\vec{k})=\frac{1}{1+\mathrm{e}^{\left(E_{n}(\vec{k})-E_{f}\right) / K T}}
$$

Then the total number N of electrons in the n-th band must equal the following sum over all the allowed values in k space in the first BZ:

$$
\text { spin } \xrightarrow{N=2 \times} \sum_{\text {all } \vec{k} \text { in FBZ }} f_{n}(\vec{k})
$$

1D Case:

The number of allowed k-values per unit length in k -
 space is $L / 2 \pi$, therefore:

$$
\Rightarrow \quad N=2 \times \sum_{\text {all }} \sum_{k i n F B Z} f_{n}(k)=2 \times L \int_{-\pi / a}^{\pi / a} \frac{d k}{2 \pi} f_{n}(k)
$$

Statistics of Electrons in Energy Bands

Need to find the total number of electrons in the n-th band

$$
N=2 \times \sum_{\text {all } \vec{k} \mathrm{in} \mathrm{FBZ}} f_{n}(\vec{k})
$$

2D Case:
The number of allowed k-values per unit area in k-space is:

Therefore:

3D Case:
The number of allowed k-values per unit volume in k-space is: $\frac{V}{(2 \pi)^{3}}$
Therefore:

$$
N=2 \times \sum_{\text {all }} \sum_{\mathrm{k} \mathrm{inFBZ}} f_{n}(\vec{k})=2 \times V \int_{F B Z} \frac{d^{3} \vec{k}}{(2 \pi)^{3}} f_{n}(\vec{k})
$$

Band Filling at $T \approx 0 K$ for a 1D lattice

Suppose the number of primitive cells $=N_{1}$
Question: suppose we have 2 electrons per primitive cell. How will the bands fill up at $T \approx 0 K$? Where will be the Fermi level?
2 electrons per primitive cell
$\Rightarrow 2 N_{1}$ total number of electrons
Number of k-values per band $=N_{1}$
Number of quantum states per band $=2 \times N_{1}$
spin \uparrow
\Rightarrow First band will be completely filled. All higher bands will be empty
Question: Suppose we have 3 electrons per primitive cell. How will the bands fill up at $T \approx 0 K$?

3 electrons per primitive cell

$\Rightarrow 3 N_{1}$ total number of electrons
\Rightarrow First band will be completely filled. Second band will be half filled. All higher bands will be empty

Band Filling at $T \approx 0 \mathrm{~K}$ for a 2D lattice

Suppose the number of primitive cells $=N_{1} N_{2}$

Question: suppose we have 2 electrons per primitive cell. How will the bands fill up at $T \approx 0 K$? Where will be the Fermi level?

2 electrons per primitive cell
$\Rightarrow 2 N_{1} N_{2}$ total number of electrons
Number of k-values per band $=N_{1} N_{2}$
Number of quantum states per band $=2 \times N_{1} N_{2}$
spin ${ }^{\wedge}$
\Rightarrow First band will be completely filled. All higher bands will be empty

Important lesson:

In an energy band (whether in 1D, 2D or 3D) the total number of quantum states available is twice the number of primitive cells in the direct lattice. How the bands get filled depends on the number of electrons per primitive cell.

Fermi Surfaces (3D) and Contours (2D) in Solids

Fermi surface of a simple cubic direct lattice shown inside the first BZ

Fermi surface of a FCC lattice shown inside the first BZ (the figure shows the Fermi surface of Copper)

Band Filling at $T \approx 0 \mathrm{~K}$ for Silicon

Silicon:
Atomic number: 14
Electron Configuration: $1 s^{2} 2 s^{2} 2 p^{6}$,
Number of electrons in the outermost shéill: 4

- The electrons in the outermost shell can move from atom to atom in the lattice - they are not confined to any individual atom. Their energies are described by the energy bands

- Silicon lattice is FCC
- There are 2 Silicon atoms per primitive cell (2 basis atoms)
\Rightarrow There are 4 electrons contributed by each Silicon atom and so there are 8 electrons per primitive cell that are available to fill the energy bands

Band Filling at T OK for Silicon

- There are 8 electrons per unit cell available to fill the energy bands
- Recall that in each energy band the number of states available is twice the number of primitive cells in the crystal
- In Silicon, the lowest 4 energy bands will get completely filled at $T \approx 0 \mathrm{~K}$ and all the higher energy bands will be empty

Silicon Energy Bands
ans

Energy Bands in Silicon

- The highest filled energy band is called the valence band. In silicon the valence band is double degenerate at most points in the first BZ
- The lowest empty energy band is called the conduction band
- In energy, the valence band maximum and the conduction band minimum need
not happen at the same point in k -space (as is the case in Silicon)
- The lowest energy of the conduction band is called E_{c} and the highest energy of the valence band is called E_{v}

Silicon Energy Bands

