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Handout 6

Electrons in Periodic Potentials

In this lecture you will learn:

• Bloch’s theorem and Bloch functions

• Electron Bragg scattering and opening of bandgaps

• Free electron bands and zone folding 

• Energy bands in 1D, 2D, and 3D lattices
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The Reciprocal Lattice and X-Ray Diffraction
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Bragg condition for X-ray scattering
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X-Ray Diffraction and Bragg Planes
2D square 
reciprocal lattice
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Consider x-rays with wavevector        incident 
on a crystal, as shown:
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Atomic Potentials in Crystals

The potential energy of an electron due 
to a single isolated atom looks like:

0 x

 rV


In a crystal, the potential energy due to 
all the atoms in the lattice looks like:

0
x

 rV


Energy levels

The lowest energy levels and wavefunctions of electrons remain unchanged when 
going from an isolated atom to a crystal

The higher energy levels (usually corresponding to the outermost atomic shell) get 
modified, and the corresponding wavefunctions are no longer localized at 
individual atoms but become spread over the entire crystal

Potential of 
an isolated 
atom

Potential in 
a crystal

0

0

Energy 
levels

Vacuum 
level
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Properties of Atomic Potentials in Crystals

• The atomic potential is lattice periodic (even for a 
lattice with a basis):

   rVRrV




where     is any lattice vectorR


• Because the atomic potential is lattice periodic, it can be 
written as a convolution (assuming a lattice in “d ” dimensions)

and expanded in a Fourier series of the type:
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
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       
j

j
d RrrVrV




where only the reciprocal lattice vectors appear in the exponential

 The Fourier components of the periodic potential contain only the reciprocal 
lattice vectors

  cell  primitive one in potential rV


   rVRrV


Verify that:
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Properties of Electron Wavefunctions in Crystals

Electrons in a crystal satisfy the Schrodinger equation:

       rErrVr
m

   2
2

2
Where:

   rVRrV




Since the potential is periodic, and one lattice site is no different 
than any other lattice site, the solutions must satisfy:

   22
rRr


 

This implies that the wavefunction at positions separated by a lattice vector can 
only differ by a phase factor:

     reRr Ri  

 
It follows that both the following relations must hold:
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
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
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
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Which implies:
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Properties of Electron Wavefunctions in Crystals

The simplest, and the only way, that the relation:

can hold for all lattice vectors is if the phase is a linear scalar 
function of the vector     :

     '' RRRR


 

R


  RkR


.
where      is some vector. It follows that our solutions must satisfy:k



   reRr Rki  

 .
Bloch’s Theorem:

The above is one version of the so called Bloch’s theorem, which says that 
associated with every solution of the Schrodinger equation in a periodic potential 
there is a wavevector     such that:k



   reRr Rki  

 .

Solutions of the Schrodinger equation for periodic potentials with the above 
property are called Bloch functions
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Case Study: Electron in a 1D Periodic Potential

Consider the 1D Bravais lattice,

a

The position vector        of any lattice point is given by:
And the reciprocal lattice and reciprocal lattice vectors are:

anRn nR

k

a
2

x

We will suppose that the periodic atomic potential V(x) is small, and that the  electrons 
are essentially free, and we will treat the potential as a perturbation and see how it 
effects the free electrons. We have:

   xVanxV 

Consequently, the Fourier series expansion of V(x) will be:

       
a

GkV
GVeGVxV m

m
xGi

m
m

m 
 :where

a
mGm

2


Free Electron Approach:
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Electron in a 1D Periodic Potential: Bragg Scattering

x

The key idea is that the electrons will Bragg scatter from the periodic atomic 
potentials just like X-rays:

a

k

'k

mGkk '

For Bragg scattering, the difference between the final and initial wavevector must 
equal a reciprocal lattice vector:

AND the final and initial electron energies must be equal:

m

k

m

k

22

' 2222 


Both the above conditions are satisfied if: 

2
&' mG

kkk 

The initial electron 
wavevector must be 
one-half of a 
reciprocal lattice 
vector OR the initial 
electron wavevector 
must be on a Bragg 
plane (or point in 1D)

kaa a2a2

1G1G

2G2G
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Consider an electron with wavevector k. The electron will “Bragg scatter” from the 
atoms if the electron wave, with wavelength ,  reflecting off successive atoms adds 
in phase in the backward direction

This condition gives:
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Electron in a 1D Periodic Potential: Bragg Scattering

The Bragg condition can also be thought in terms of interference of waves in 
scattering:
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Perturbation Theory: A Review

In the presence of a perturbing potential, the new eigenfunctions and energies 
are given by:

Consider a Hamiltonian with eigenfunctions and energies given by:

nnno eH  ˆ

  nnno EVH   ˆˆ

If the perturbation is small, then the new eigenfunctions are slightly perturbed from 
the original eigenfunctions and, to first order in the perturbation, can be written as:

terms  order  higher
ˆ







m
nm mn

nm
nn ee

V





Thus, the perturbation “mixes” the eigenfunctions of the original Hamiltonian to 
generate the eigenfunction of the new Hamiltonian. 

Note: The effect of the perturbation is not small, and the perturbation theory breaks 
down, if for:

0ˆ nm V 
we have:

0 mn ee
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Electron in a 1D Periodic Potential: Perturbation Theory

The goal here is to treat the periodic potential as a perturbation to the free electron 
Hamiltonian. So in the absence of the perturbation we have the free electron case:

  xki
k e

L
x

1
 2

222

22

ˆ
ˆ

xmm
P

Ho






 
m
k

ke
2

22


  kko keH  ˆ

The energy dispersion relation of free electrons 
is parabolic, as shown in the figure

k

Energy

m
k

2

22

Now assume that the perturbation is the 
periodic potential of the atoms:

 xV

which can also be expressed in a Fourier series as:

       
a

GkV
GVeGVxV m

m
xGi

m
m

m 
 :where
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Electron in a 1D Periodic Potential: Perturbation Theory

So we try perturbation theory and write:

    terms  order  higher
'

ˆ
'

'

' 


 k
k

kk
kk keke

V





     kko kExVH   ˆˆ

And write the new eigenfunction as:

First evaluate the potential matrix element (L is the size of the entire 1D crystal):

 

 

  m
m

Gkkm

m

xki
L

L

xGixki
m

xki
L

L

xki
kk

GkkGV

eeedxGV
L

e
L

xVe
L

dxV

m

m



 













'    unless    0               

1
               

11ˆ

,'

2

2

'

2

2

'
'




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Electron in a 1D Periodic Potential: Perturbation Theory

   
 

    terms  order  higher        

terms  order  higher
'

ˆ
'

'

'











 mGk
m m

m
k

k
k

kk
kk

Gkeke
GV

keke

V








 The new eigenfunction corresponding to the wavevector k consists of a 
superposition of only those plane waves whose wavevectors differ from k by 
reciprocal lattice vectors

The new eigenfunction is:

  0mGV0)()(  mGkeke

The effects of the periodic perturbation will be large for those electron states for 
which the denominator is zero or is close to zero:

and

 

a
m

G
k

kGG
m

m

mm






2

02
2

2
2

Bragg condition

 Perturbation theory breaks down for those electron states that Bragg scatter 
from the periodic potential! 

  
m

Gkkm
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m
GV

V

,'

'
ˆ


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Electron in a 1D Periodic Potential: Variational Solution

k

Energy

m
k

2

22

We consider a periodic atomic potential of the form:

      xGixGi eGVeGVxV 11
11




Since the potential is always real:    1
*

1 GVGV 

111
22

G
a

G
a

G  


a


a




The potential will strongly couple plane wave 
eigenstates with wavevectors that differ by
and the strongest coupling will be between states 
with wavevectors,

because they have equal energy 
2

,
2

, 11 
GG

aa


1G

For states with wavevectors k near +/a, we assume a variational solution for the 
perturbed state:

   

        xGkixki
k

Gkkk

e
L

Gkce
L

kcx

Gkckc

1

1

11
1

1


















Variational Solution (Finite Basis Expansion):

Or:
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Electron in a 1D Periodic Potential: Variational Solution

k

Energy

m
k

2

22

a


a




   
11  Gkkk Gkckc 

     kko kExVH  ˆ

Plug it into the Schrodinger equation:

And then take the bra with         and then with         
to get the matrix eigenvalue equation:

1Gkk

   
   

 
     

 

























  1111

1

Gkc

kc
kE

Gkc

kc

GkeGV

GVke

Solution for the energy eigenvalue is:

           2
1

2
11

22 
 






 




 GV
GkekeGkeke

kE ak   near  for

           2
1

2
11

22
GV

GkekeGkeke
kE 






 






Now, in a similar way, had we started off by trying to find a solution for k near –/a we 
would have obtained:

ak   near  for
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Electron in a 1D Periodic Potential: Variational Solution

k

Energy

a


a




The obtained solutions E(k) are plotted on top of 
the free electron energy dispersion e(k) so that 
you can see the difference. An energy gap opens 
up!

 ke

 kE

gE
   11 22  GVGVEg

      xGixGi eGVeGVxV 11
11




111
22

G
a

G
a

G  


ak   near  for

ak   near  for

           2
1

2
11

22 
 






 




 GV
GkekeGkeke

kE

           2
1

2
11

22
GV

GkekeGkeke
kE 






 






   1
*

1 GVGV 
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Electron in a 1D Periodic Potential: Variational Solution

k

Energy

a


a




Lets find the wavefunctions for k=/a

The matrix equation becomes:

   
   

 
     

 

























 ac

ac
aE

ac

ac

aeGV

GVae











1

1

The two solutions for V(G1) real are:

     1GVaeaE  

 
 

 
  




































  1

1

2
1

1

1

2
1

ac

ac

ac

ac







   

 















































x
aL

i

x
aLee

L
x

acac

x
a

ix
a

i

a

aaa















sin
2

cos
2

2
1

 aE 

 aE 
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Electron in a 1D Periodic Potential: Origin of the Bandgaps

We have:

 











































x
aL

i

x
aLee

L
x

x
a

ix
a

i

a 







sin

2

cos
2

2
1

Note that (for V(G1) real):

     

  







 


x
a

GV

eGVeGVxV xGixGi

2
cos2        1

11
11

 xV
a

x

 2
xa

• The solutions are 
standing waves (as a result 
of forward and backward 
Bragg scattering)

• The higher energy 
solution has larger 
probability density in the 
region of higher potential

Lower energy 
solution

Higher energy 
solution

     1GVaeaE  

k

Energy

a


a




 aE 

 aE 
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Electron in a 1D Periodic Potential: Summary

Summary of Findings:

• For a perturbative periodic potential with the following Fourier Series representation,

      xGixGi eGVeGVxV 11
11




k

Energy

a


a




the plane wave eigenfunctions of the free electron 
with wavevector k get coupled with the wavevectors 
(k+G1) and (k+G-1) as a result of the fact that the 
potential had wavevectors G1 and G-1 in its Fourier 
series. 

• If the electron wavevector k is such that e(k) and 
e(k+G1) have the same energy, or if e(k) and e(k+G-1) 
have the same energy, then a bandgap of magnitude 
2|V(G1)| will open up in the free electron dispersion 
for the wavevector value k

11

1

2

2

G
a

G

a
G










   

2
1

1

G
k

Gkeke



    

2
1

1








G

k

Gkeke  12 GV

Bandgap will open for these values of k
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Electron in a 1D Periodic Potential: More General Case

k

Energy

a


a




 12 GV

a
2

a
2



 22 GV

Now suppose the potential looks like:

     
    xGixGi

xGixGi

eGVeGV

eGVeGVxV

22

11

22

11

            











222

111

44

22

G
a

G
a

G

G
a

G
a

G













   

a
G

k

Gkeke






2
1

1

   

a
G

k

Gkeke










2
1

1

Bandgaps will open at these k-points:

(1)

(2)

   

a
G

k

Gkeke

2
2
2

2





   

a
G

k

Gkeke

2
2

2

2







(3)

(4)
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Bandgaps and Bragg Planes

k

Energy

a


a



a
2

a
2



   

a
G

k

Gkeke






2
1

1

   

a
G

k

Gkeke










2
1

1

Bandgaps will open at these k-points:

(1)

(2)

   

a
G

k

Gkeke

2
2
2

2





   

a
G

k

Gkeke

2
2

2

2







(3)

(4)

Bandgaps open at Bragg points (1D), lines (2D), planes (3D) in the reciprocal space. 
Recall that a wavevector is on a Bragg point (1D), line (2D), plane (3D) if the following 
condition holds:

2
.

2
G

Gk




 and for 1D it becomes:
2
mG

k 
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Bandgaps and Brillouin Zone Boundaries

k

Energy

a


a



a
2

a
2



1st BZ 1st BZ2nd BZ 2nd BZ

• Bandgaps open at Bragg points 
(1D), lines (2D), planes (3D) in the 
reciprocal space. 

• The Bragg points (1D), lines (2D), 
planes (3D) define the boundary 
between Brillouin zones

 Bandgaps open at the Brillouin 
zone boundaries

Some very important observations:
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The Restricted k-Space Convention and Energy Bands

k

Energy

a


a



a
2

a
2



Consider any value of the wavevector outside the 
FBZ, as shown

The unperturbed solution would be plane wave of 
wavevector k:

The periodic potential perturbation would couple 
this plane wave state with all other states that are 
separated from it in k-space by reciprocal lattice 
vectors. Therefore the actual solution would look 
something like: original 

k value

  xki
k e

L
x

1


       

m

xGki
mk

me
L

Gkcx
1

The above is a superposition of plane waves with wavevectors that differ from the 
unperturbed wavevector by reciprocal lattice vectors

The convention is to label the actual solutions              not by the k-value of the 
unperturbed wavefunction but by that wavevector in the superposition solution 
that falls in the FBZ, as shown

label 
k value

 xk

original 
k value

label 
k value
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The Restricted k-Space Convention and Energy Bands

In the actual solution:        

m

xGki
mk

me
L

Gkcx
1

The k-value used for labeling is always understood to be in the first BZ

Consequently, the energy-vs-k dispersion relation is always drawn only for the first 
BZ by translating the energy-vs-k curves lying in higher BZs to the the first BZ by 
appropriate reciprocal lattice vectors, as shown below:

The resulting different “bands” of energy in the first BZ are called “energy bands” 
and are labeled as n=1,2,3,….

k

Energy

a


a



a
2

a
2


k

Energy

a


a



a
2

a
2


k

Energy

a


a



a
2

a
2



n=1

n=2

n=3
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The Restricted k-Space Convention and Energy Bands

n=1

n=2

n=3

Since now we have multiple energy values for 
the same k-label, we use an additional label “n” 
to indicate the energy band. The final solutions 
and energy values are then written as follows:

where k-value is understood to be in the first 
BZ. And the solution can be expanded as:

   kEx nkn and,

       

m

xGki
mnkn

me
L

Gkcx
1

,

   reRr Rki  

 .

Bloch’s theorem check:
We know that solutions of the Schrodinger equation in periodic potentials (Bloch 
functions) need to satisfy the Bloch’s theorem:

           

 xe

e
L

Gkcee
L

GkcRx

kn
Rki

m

xGki
mn

Rki

m

RxGki
mnkn

mm

,

,

                     

11







   

k

Energy

a


a



a
2

a
2


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From Free Electron Dispersion to Energy Bands – 1D

k

Energy

a


a



a
2

a
2


k

Energy

a


a



a
2

a
2



k

Energy

a


a




a
2

a
2


k

Energy

a


a



a
2

a
2



Start from 
free electron 
dispersion

Fold the free-
electron band 
into the first 
BZ

Open up 
bandgaps 
at edges 
of BZs

One can always get an approximate idea of how the bands will look:

Open up 
bandgaps

Fold into the 
first BZ
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k

Energy

a


a



a
2

a
2


k

Energy

a


a



a
2

a
2



Fold the free-
electron band 
into the first 
BZ

From Free Electron Dispersion to Energy Bands: Zone Folding

k

Energy

a


a



a
2

a
2



An easy trick to construct the 
free electron bands folded into 
the first BZ is to assume that a 
replica of the free electron band 
is sitting at each reciprocal 
lattice point
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Generalization to Higher Dimensions - I

Consider a 2D or a 3D crystal with the periodic potential given as:

    rGi

j
j

jeGVrV
 .



• The potential will couple the free-electron state with wavevector       to all other 
states with wavevectors

• The strongest coupling will be with states whose energy                      equals     

• Therefore, strong coupling will occur if the wavevector      satisfies: 

• Since, the reciprocal lattice vector        is arbitrary, one can also write the above 
condition as:

k


jGk




m

Gk j

2

22 
 

m

k

2

22 


2
.

0.2

22

2

2

2222

j
j

jj

j

G
Gk

GkG

m

k

m

Gk



















jG


2
.

2
G

Gk




 Bragg condition

k

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Generalization to Higher Dimensions - II

2D square reciprocal lattice1D reciprocal lattice

12 2 33

1

2

2

2
2

3

3

33

3

3

3

3

In a 1D lattice, bandgaps opened up at k-values at the Bragg points (edges of BZs):

Same thing happens in higher dimensions: 
bandgaps open up for wavevectors that lie on 
the Bragg lines (2D), planes (3D). 

• Recall that a wavevector will like on a Bragg 
line/plane if it satisfies:

2
.

2
G

Gk






for some reciprocal lattice vector G


• Bragg lines/planes in k-space are 
perpendicular bisectors of some reciprocal 
lattice vector
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Generalization to Higher Dimensions - III

2D square reciprocal lattice

1

2

2

2
2

3

3

33

3

3

3

3

• Bandgaps will open up at the edges of the 
Brillouin zones

• Wavevector is restricted to the first BZ, and 
electron energy-vs-k dispersion curves in 
higher BZs can be translated by appropriate 
reciprocal lattice vectors to be in the first BZ 
to obtain energy bands

• Electron energies and solutions are written 
as:

• The solutions satisfy the Bloch’s theorem:

and can be written as a superposition of 
plane waves, as shown below for 3D:

 rkn


, and  kEn



   reRr Rki  

 .

     
  

j

rGki
jnkn

je
V

Gkcr



 .

,
1
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Energy Bands of a 2D Square Lattice - I

a

a
1

2

2

2
2

3

3

33

3

3

3

3
a
2

a
2

2D square 
direct lattice

Reciprocal lattice

y
a

nx
a

mG ˆ
2

ˆ
2  



Question: How to draw the free electron 
bands?

Answer: Assume a free electron band 
sitting at each reciprocal lattice point and 
then consider its contribution to the bands 
in the first BZ
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Energy Bands of a 2D Square Lattice - II

1

2

2

2
2

3

3

33

3

3

3

3
a
2

a
2

Reciprocal lattice

y
a

nx
a

mG ˆ
2

ˆ
2  



Energy

(0,0) (0,/a)

 X

2

1

1

1

• It is obviously difficult to draw bands for 2D 
or 3D lattices

• The bands are usually drawn along some 
specific high-symmetry directions in k-space. 
The figure below shows the bands from  to 
the X point (the numbers indicate the 
degeneracy of each energy band) 

X M
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Energy

(0,0) (0,/a)

 X

2

1

1

1

Energy

(0,0) (0,/a)

 X

2

1

1

1

Energy Bands of a 2D Square Lattice - II

• Once the free electron energy bands have been drawn in the first BZ then the 
locations where bandgaps are likely to be opened are identified

• A rough sketch of the actual bands can then be made, as shown above
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







a


,0







 0,

a








 

a


,0

Energy Bands of a 2D Square Lattice - III









a


,0

a
2

a
2

FBZ



X
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   
11  Gkkk Gkckc 

     kko kExVH  ˆ

Plug it into the Schrodinger equation:

And then take the bra with         to get:k

    
       

      
           
           kckEGkcGVkcke

kckEGkcxVkcke

GkckckE

GkckcxVH

kExVH

Gkk

Gkkk

Gkkok

kkkok

























11

1

1

1

1

1

1

ˆ

                                                         

ˆˆ

ˆˆ









  
m

Gkkmkk m
GVV ,''

ˆ 

Remember the matrix element of the periodic potential between the plane wave 
states:

Trial solution for values of k near G1:

Appendix: Obtaining the 2x2 Matrix Equation (On Slide 14)

First result
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   
11  Gkkk Gkckc 

     kko kExVH  ˆ

Plug it into the Schrodinger equation:

And then take the bra with                to get:1Gk

    

       
      

           
           1111

111

1

1

ˆ

                                                         

ˆˆ

ˆˆ

1

11

11

11





























GkckEkcGVGkcGke

GkckEkcxVGkcGke

GkckckE

GkckcxVH

kExVH

kGk

GkkGk

GkkoGk

kGkkoGk









Second result

Appendix: Obtaining the 2x2 Matrix Equation

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Appendix: Obtaining the 2x2 Matrix Equation

             kckEGkcGVkcke  111

We have the two equations:

             11112   GkckEkcGVGkcGke

which can be written in the matrix form:

   
   

 
     

 

























  1111

1

Gkc

kc
kE

Gkc

kc

GkeGV

GVke


