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Handout 32

Electronic Energy Transport and Thermoelectric Effects

In this lecture you will learn:

• Thermal energy transport by electrons
• Thermoelectric effects

Seebeck Effect
Peltier Effect

• Thermoelectric coolers
• Thermoelectric power converters

Lars Onsager

(1903-1976)
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Note on Notation
In this handout, unless states otherwise, we will assume a conduction band 
with a dispersion given by:
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Thermoelectric Effects

There are two important effects in materials that relate electrical currents, heat 
flow (or thermal currents), voltage gradients (or electric fields), and temperature 
gradients:

1) Seebeck Effect

2) Peltier Effect

The Seebeck effect is important technologically since it expresses how 
temperature differences can be used to generate voltage differences

The Peltier effect expresses how current flow can be used to generate 
temperature differences. 
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Electrical Currents and Thermal Currents of Electrons
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In  the most general case, when electric field, density gradient, and/or a temperature 
gradients are all present, the electrical and thermal currents can be written as,
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Or in matrix form as:

 
   

    
   

 
  






























































rT

rE
erTrT

rErE
e

E
rTrJ

rJ

r

fr

thr

fcr

thth


















 1
.

1
.







• The above equations show that a temperature gradient can generate an electrical 
current and an electric field (or a carrier density gradient) can generate a thermal 
current

• The above equations can be used to evaluate the material responses in different 
situations of practical interest

• NOTE: The contribution of phonons (or the lattice) to the thermal current will be 
ignored here 
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• Consider electrons in the conduction band of a n-doped semiconductor or a metal
• There is no applied field
• There is a temperature gradient 
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Assume for the electron density:
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The local equilibrium distribution function is:
Temperature is 
position dependent

A temperature gradient in conductive material can cause an electric current

Electrical Current from Temperature Gradient
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• Electrons with energies higher than the Fermi 
level diffuse from the region of higher temperature 
to the region of lower temperature

• Electrons with energies lower than the Fermi level 
diffuse from the region of lower temperature to 
region of higher temperature

• The higher energy electrons of course win and the 
current is in the direction of the temperature 
gradient 

(Q:What will happen in a p-doped semiconductor?)

• Fermi level can also change with temperature but 
we will assume that it does not

A Physical Explanation
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Start from the Boltzmann equation assuming no applied field: 
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Electrical Current from Temperature Gradient: Boltzmann Equation
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Note that:

Therefore, RHS becomes:

Electrical Current from Temperature Gradient: Boltzmann Equation
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Finally, putting LHS and RHS together we have:
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Electron 
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12 TT 

• Electrons with energies higher than the 
Fermi level diffuse from the region of higher 
temperature to the region of lower 
temperature

• Electrons with energies lower than the Fermi 
level diffuse from the region of lower 
temperature to region of higher temperature

• For n-doped semiconductor:

• For p-doped semiconductor:

0

0

Electrical Current from Temperature Gradient: Boltzmann Equation
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Example – n-doped semiconductor at high temperatures:

Consider a semiconductor at high temperatures and assume that Maxwell-Boltzmann 
statistics apply:
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For the conduction band of a semiconductor with the following dispersion:
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We get (assuming an energy independent scattering rate  ):
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Electrical Current from Temperature Gradient: Semiconductors
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Example – metal or a n-doped semiconductor at low temperatures:

In this case:

However, using the above approximation will give a zero for         so one has to be 
more careful. For the conduction band with the following isotropic dispersion:
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One obtains after a more careful computation of the above integral:

     

 
  




















































fFFdD

FdD

F

FdD
FdDFF

E
KT

e
K

d
EEg

Eg
KT

e
K

KT
E

Eg
Eg

e
K

vve
d

6
1'

3
    

'
3

22

2
2 

Electrical Current from Temperature Gradient: Metals
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Thermopower: The Seebeck Effect and the Seebeck Tensor
T1 T2    00  rErT frr
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• Consider a piece of metal (or semiconductor) with its two ends kept at different 
temperatures by some external means
• Since no current can flow in the external circuit, an electric field will build up 
inside the material in response to the temperature gradient resulting in a voltage 
difference between the two output terminals (this is the “Seebeck Effect”)
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The total current density in the material can be written as:
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The Thermopower tensor or the Seebeck tensor is defined as:

For the diagram above:
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The Seebeck Tensor: Metals and Semiconductors
T1 T2  00  ErTr
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CASE I - If the slab was a n-doped semiconductor (and Maxwell 
Boltzmann statistics applied):
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CASE II - If the slab was a heavily n-doped semiconductor (or a metal):
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Lesson: compared to metals (in which Ef >> KT), doped semiconductors will 
produce a larger potential difference for a given temperature difference 
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Mott’s Formula
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Measurement of the Seebeck Tensor and Thermocouple
Some care is needed in the measurement of the Seebeck Effect

Consider a setup to measure the Seebeck Effect of material A by contacting it with 
leads made of material B, as shown:

A
V

+

-

T2

T1

T

T
The temperature of the two ends of material A are kept at T2 and T1

It is not difficult to show that in the absence of current flow, the potential V measured 
in the external circuit is:

B

B

   12 TTSSV BA 

Therefore, the Seebeck tensors of the materials A and B need to be significantly 
different in order to obtain a large potential difference. If SA ≈ SB, then the voltages 
generated in each material cancel when going around the loop. 

The Seebeck Effect is the principle behind the operation of the temperature sensor 
called the thermocouple
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Thermodynamics and Thermal Currents in Materials
The first law of thermodynamics relates the change dU in the internal energy of a 
system to the heat energy intake dQ, the mechanical work done by the system PdV,
and the particle number change dN:

dNPdVdQdU 

For electrons in semiconductors or metals, the mechanical work term can be 
neglected and the chemical potential  equals the Fermi level Ef:

dNEdUdQ f

Consider a slab of material in which heat energy, carried by the electrons, is flowing 
from left to right, as shown:

Suppose the heat energy flux (units: Watts/cm2) is Jth, the internal energy flux is 
JU (units: Watts/cm2) , and the carrier number flux is JN (units: #/cm2) , then: 

  NfNfUth JEEJEJJ 

The above relation is used to compute the thermal energy flow due to electrons 
in materials

thJ
UJ

NJ

Suppose each carrier 
has energy E
 JU = E JN
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• Consider electrons in the conduction band of a n-doped semiconductor or a metal
• There is no applied field but there is a temperature gradient 
• As the electrons move from the hot side to the cold side, they also transfer thermal 
energy

T1 T2  0 rTr




A temperature gradient in a conductive material results in heat flow (thermal 
current) because of electron flow

Thermal Current from Temperature Gradient

We have already solved for the distribution function:
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The contribution to heat flow by the electrons can be obtained by multiplying the 
distribution function by                               and summing over all states:    kvEkE f
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Here,          is the Thermal Conductivity tensor of the electronsth



9

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Example – n-doped semiconductor at high temperatures:

Consider a semiconductor at high temperatures and assume that Maxwell-Boltzmann 
statistics apply:

    
     KTrEkE

KTEkEo
f

f
e

e
rkf




 






1

1
,

For the conduction band of a semiconductor with the following dispersion:

  kMkEkE T
c


..

2
1

2
   kMkv





.1

The thermal conductivity of the electrons comes out to be:

KTEE fc 

 
 

    
          rTkvrTkv
rT
EkE

E
rkfkd

rJ rthr
fo

d

d

th







  





 ..
,

2
2

FBZ

2




T1 T2  0 rTr




          








 








KT

KTddKTEEdEE

e

K fcfc
th

22

2

12222

Thermal Current from Temperature Gradient: Semiconductors
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 
 

    
          rTkvrTkv
rT
EkE

E
rkfkd

rJ rthr
fo

d

d

th







  





 ..
,

2
2

FBZ

2




T1 T2  0 rTr




Example – metal or a n-doped semiconductor at low temperatures:

In this case:

However, using the above approximation expression will give a zero for         so one 
has to be more careful. For the conduction band with the following isotropic 
dispersion:

    f
o EkE

E
rkf









,

th

 
eff

c m
k

EkE
2

22


   

22

2

22
2

2

2

3

33




























e
K

T

e

TK
eEgvvKT

e

K
d

th

fdDFFth









Thermal Current from Temperature Gradient: Metals

The thermal conductivity of the electrons comes out to be:

Wiedemann–Franz Law for metals
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Thermal Currents from Electric Fields and Density Gradients

       000  rErEErT fcrr




• Consider electrons in the conduction band of a n-doped semiconductor or a metal
• There is no temperature gradient but there is an applied field and possibly a carrier 
density gradient as well
• As the electrons move they also transfer thermal energy

We have already solved for the relevant distribution function:

The contribution to heat flow by electrons can be obtained by multiplying the 
distribution function by                               and summing over all states:    kvEfkE




 
 

             

    





 

 











 






rErE
e

ET

kvrErE
e

EkvEkE
E

rkfkd
erJ

fcr

fcrf
o

d

d

th










1
.          

1
.

,

2
2

FBZ






Here,     is the same tensor found earlier which related electrical current to a 
temperature gradient



            





 


 rErE

e
Ekv

E
rkf

erkfrkf fcr
o

o





1
.

,
,, 
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Electrical Currents and Thermal Currents

    000  rEErT frr




In  the most general case, when electric field, density gradient, and/or a temperature 
gradients are all present, the electrical and thermal currents can be written as,

        

          rTrErE
e

ErTrJ

rTrErE
e

ErJ

rthfcrth

rfcr















 







 

.
1

.

.
1

.





Or in matrix form as:

The above equations can be used to evaluate the material responses in different 
situations of practical interest

 
   

    
   

 
  






























































rT

rE
erTrT

rErE
e

E
rTrJ

rJ

r

fr

thr

fcr

thth


















 1
.

1
.






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The Peltier Effect and the Peltier Tensor
Consider a material in which thermal (or density) gradients are not present. We have:

   
     rErTrJ

rErJ

th




.

.








       rJrJrTrJth


.. 1  

is called the Peltier tensor and is related to the Seebeck tensor. The relation,

implies that a thermal current accompanies an electrical current 



   rJrJth


.

Now consider current flow in a double junction of materials A and B, as shown below, 
and suppose that A < B . The electrical current J is constant everywhere.

AB B J

thBJ thBJthAJ

  JJJ ABthAthB    JJJ ABthAthB 

Since material B carries more thermal current than material A for the same electrical 
current, the extra thermal current needs to be extracted out from the left junction 
otherwise thermal energy will pile up at that junction and make it hot. Similarly, heat 
must be provided to the right junction otherwise it will loose heat and become cold

This principle is used in electronic thermoelectric coolers (or Peltier coolers)

STFor an isotropic material:
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Thermoelectric Coolers for Refrigeration

n p n p n p

Cold Surface

Hot Surface

I

Thermal energy absorbed from the n-semiconductor and top metal junction:   Inm 

Thermal energy absorbed from the p-semiconductor and top metal junction:   Imp 

Total thermal energy absorbed from the top metal in single cell:    ISSTI npcnp 

Note that the Seebeck and the Peltier coefficients are negative for n-semiconductors

cT

hT

After taking into account Joule losses, and heat conductance, the coefficient of 
performance (COP) for cooling is:

nR pR

nthG pthG
ch TTT 




G

R Electrical resistance

Thermal conductance (electronic 
as well as lattice contributions)

     
   

  0,whenorsrefrigerat forlimit Carnot COP

2

sourcecurrent  the by done Work

body cold from removedHeat 
COP 2

2











GR
TT

T

RRIISST

RRITGGISST

ch

c

pnnp

pnpthnthnpc

BiSe or BiTe

series in units pn of NumberN
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Thermoelectrics for Power Generation

n p n p n p

Cold Surface

Hot Surface

I

hT

cT

nR pR

nthG pthG
ch TTT 

extR

A thermoelectric cooler operated in reverse acts like a heat engine
The power conversion efficiency is given by:

    
      2body cold the tolost Heat 

load external the to delivered Power
2

pnpthnthnph

np
expn

ex

RRITGGISST

ISST
RRRN

R








where:
 

   T
RRRN

SS
I

expn

np 





  0,whenenginesheat  forlimit Carnot 


 GR
T

TT

h

ch

A commonly used figure of merit for a pn thermoelectric is:
 

  pthnthpn

np

GGRR

SS
Z






2

series in units pn of NumberN

BiSe or BiTe




G

R Electrical resistance

Thermal conductance (electronic 
as well as lattice contributions)

Both COP and   approach the Carnot values as Z  ∞
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Thermoelectric Figure of Merit and 3D Parabolic Band Limit

The FOM is usually expressed as the dimensionless product ZT: 
th

TS
TZ


2



In the ideal scenario where lattice contribution to the thermal conductivity is 
much smaller compared to the electronic contribution, and the semiconductor is 
reasonably well doped ( Ec-Ef ~ 0.5KT ), then: 

 
  78.0

4355.0*55.0*5.0
255.0 22







th

TS
TZ


 Independent of most 

material parameters!

In experiments, electronic       is measured 
under conditions of zero current, which 
gives:

 The best measured value of ZT to be 
expected is,

th

 ZTthth  1measured 

  55.3
1

measured 



ZT

ZT
TZ

 a value of ~3-4 is the maximum upper 
limit for ZT for 3D parabolic band materials 
and typically it is 2-4 times smaller due to 
mostly lattice thermal conductivity Temperature (K)

Z
T

Values of ZT for Various Materials
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