Handout 32

Electronic Energy Transport and Thermoelectric Effects

In this lecture you will learn:

* Thermal energy transport by electrons
* Thermoelectric effects
Seebeck Effect
Peltier Effect
* Thermoelectric coolers
* Thermoelectric power converters

Lars Onsager
(1903-1976)
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Note on Notation
In this handout, unless states otherwise, we will assume a conduction band
with a dispersion given by:

E(K)=E. +§|ZT MK

In the presence of an electric field:

E(E,F):EC(F)+§|ZT MK

where:

VE.(F)=€eE
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Thermoelectric Effects

There are two important effects in materials that relate electrical currents, heat
flow (or thermal currents), voltage gradients (or electric fields), and temperature
gradients:

1) Seebeck Effect

2) Peltier Effect

The Seebeck effect is important technologically since it expresses how

temperature differences can be used to generate voltage differences

The Peltier effect expresses how current flow can be used to generate
temperature differences.
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Electrical Currents and Thermal Currents of Electrons

V:T(F)20  E=0  V:[E.(F)-E(F)]=0(or Vin(r)=0)

In the most general case, when electric field, density gradient, and/or a temperature
gradients are all present, the electrical and thermal currents can be written as,

3F)= ?.(E -1yl (0)- (F)]j—z?.Vr—T )

3n(€)=T0)% (£ 19[E ()& ()] -5 97 ()
Or in matrix form as:

R e e

* The above equations show that a temperature gradient can generate an electrical
current and an electric field (or a carrier density gradient) can generate a thermal
current

* The above equations can be used to evaluate the material responses in different
situations of practical interest

* NOTE: The contribution of phonons (or the lattice) to the thermal current will be
ignored here
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Electrical Current from Temperature Gradient

A temperature gradient in conductive material can cause an electric current

* Consider electrons in the conduction band of a n-doped semiconductor or a metal
* There is no applied field
* There is a temperature gradient

Ty

T
VFT(F)¢ 0 2

A
&)

V:T(F)20 E=0  V:[E.(F)-E(F)]=0

Assume for the electron density:

_ di (-

n(f)=2x | f(k,r
rBZ (27)° ( )
The local equilibrium distribution function is: Temperature is
position dependent

—

o 1
folK.7)= 140 EKFEKT()
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A Physical Explanation

VT ()

(A
)

« Electrons with energies higher than the Fermi

E level diffuse from the region of higher temperature
T2 >Ty to the region of lower temperature
Electron
diffusion * Electrons with energies lower than the Fermi level

diffuse from the region of lower temperature to
region of higher temperature

* The higher energy electrons of course win and the
current is in the direction of the temperature
gradient

(Q:What will happen in a p-doped semiconductor?)

* Fermi level can also change with temperature but
we will assume that it does not
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:

Start from the Boltzmann

equation assuming no applied field:

Electrical Current from Temperature Gradient: Boltzmann Eq
T T
: V() 2

s e W R)E vt (i) o) - 1) o))
= —r Vi (K,7).v(K) =1 (K, 7)1, (.7
=1 (K,7)=1, (k,7)-7 v (K,7).v(K)
= (K, )~ o (K,7)- 7 Vefo (K,7). v(K)

) and integrate over k-space to get:

7)v()

Multiply both sides by 2 (—e) Vv

(k

LHS:

\-

d9K
2 (—e)ngz (Zn)d f

- 3(r)

/
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ﬁctrical Current from Temperature Gradient: Boltzmann Eq
T T
: VT (F) 2

.

(A)
RHS: N\
o
- 2(—e)xFéZ% 7 Vfo (K, 7).V (K)v(K)
Note that:
fo(|2,r)=a(akj%W N r4)=_af06(lE<,r“)(E(-)_ )V;(TF()F)

Therefore, RHS becomes:
d9k

=25 L ey V7ol0r)- ) V)
=2e X dK _6f0(|Z,I7 (E(E)_Ef) ViK).v-T()|v(K
-2 FéZ(Zﬂ')d oE T(F) fk).vr@)]v(K)

\_
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Electrical Current from Temperature Gradient: Boltzmann Equation
T1 T2

VT (F)

n
&)

Finally, putting LHS and RHS together we have:

09K a0 (6.1 ) ER) =) o) o ) o mpe
J(M)=2e TXFéZ(Zﬂ')d - OaE T(F)f [v(k).VrT(r)]v(k)_—x.VFT(r)
* Electrons with energies higher than the

+ E E Fermi level diffuse from the region of higher
T2>Ty temperature to the region of lower
Electron temperature
diffusion

— * Electrons with energies lower than the Fermi

----------------- Ef  level diffuse from the region of lower
temperature to region of higher temperature

« For n-doped semiconductor: k¥ <0

f(E’Tz) « For p-doped semiconductor: x >0
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Electrical Current from Temperature Gradient: Semiconductors

i V() -
®
)=zeex | 9K _AN)ER)-E) L) v @)]v(k)= -5 . v.7()

rBz (27) oE T(r)
Example — n-doped semiconductor at high temperatures:

Consider a semiconductor at high temperatures and assume that Maxwell-Boltzmann
statistics apply:

e 1 ~EK)E _
fo(k,r)=m(g(mze (E(k)_Ef( ))/KT { EC Ef >> KT

For the conduction band of a semiconductor with the following dispersion:
2
E(|z)=EC+%|ZT MK V([K)=m".nk

We get (assuming an energy independent scattering rate 7):

- (K 9+1+ﬂ ne2z M 1= K 9.,_1.,_@ 3
e 2 KT e 2 KT
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Electrical Current from Temperature Gradient: Metals
T1 T2

VT (F)

n
&)

Sy dk oty (k,7)(E(K)-Ef ). INNVR .
0=z | o -T RS fk)vT@))vk)=—=.vT()
Example — metal or a n-doped semiconductor at low temperatures:

ot (K,F) (s
). s 0)-)
However, using the above approximation will give a zero for ¥ so one has to be
more careful. For the conduction band with the following isotropic dispersion:
2,2
EK)=E, + K
2mefs
One obtains after a more careful computation of the above integral:

= —gezr (Ve ®VE )[%J [g ‘oo Br )+gd||357(|:EF)]KT

(e[l () (€T)
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In this case:

Al

q

Thermopower: The Seebeck Effect and the Seebeck Ten§or

T1 . — T2
vV, — VFT(I');EO VrEf(l’);ﬁO V,

* Consider a piece of metal (or semiconductor) with its two ends kept at different
temperatures by some external means

« Since no current can flow in the external circuit, an electric field will build up
inside the material in response to the temperature gradient resulting in a voltage
difference between the two output terminals (this is the “Seebeck Effect”)

The total current density in the material can be written as:
3(F)=5. V& ()7 V/T(F)=0
= c:r.gvr-Ef )=k .V:T(F)

:gV,«Ef(F)=?'1 £V T([)=5.v,T()

The Thermopower tensor or the Seebeck tensor is defined as:

Ss=51.%
For the diagram above:
N = . 1dE dT
VFEf (r )= S. VFT(I’) = gidxf = SXX a = V1 _V2 = SXX (T2 _T1)
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The Seebeck Tensor: Metals and Semiconductors

T, = T
V, —— V:T(F)#0 E=#0 vV,
X
CASE I - If the slab was a n-doped semiconductor (and Maxwell
Boltzmann statistics applied):
n=NeE E)KT  — g _E KT Iog(n]
C
= __q4 _ d c
S=0 .k = Sy=—— E+1+Iog
K(d N
(V2 -V4)= =Sy (T2 -Tq)= e[2+1+ |°9(n°D(T2 -Ty)
CASE Il - If the slab was a heavily n-doped semiconductor (or a metal):
i 2 ] 2
S=6"1.%k = S, =_L[£) KT|:ng(EF)+1i|0'=—”d K(KT]
3 e 9ao(Er)  Er 6 elE
Mott’s Formula r J
2
7% K(KT _(3+T)
V2 -V4) =Sy (T2 -Tq)= ?d e[EfJ(TZ -Ty) T=""

Lesson: compared to metals (in which E; >> KT), doped semiconductors will
roduce a larger potential difference for a given temperature difference
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Measurement of the Seebeck Tensor and Thermocouple
Some care is needed in the measurement of the Seebeck Effect

Consider a setup to measure the Seebeck Effect of material A by contacting it with
leads made of material B, as shown:

T
T2 B +
A v
T B .

T

The temperature of the two ends of material A are kept at T, and T,

It is not difficult to show that in the absence of current flow, the potential V measured
in the external circuit is:

V =(Sa-Sg)(T2-T1)
Therefore, the Seebeck tensors of the materials A and B need to be significantly

different in order to obtain a large potential difference. If S, = S;, then the voltages
generated in each material cancel when going around the loop.

he Seebeck Effect is the principle behind the operation of the temperature sensor
d the thermocouple
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Thermodynamics and Thermal Currents in Materials

The first law of thermodynamics relates the change dU in the internal energy of a
system to the heat energy intake dQ, the mechanical work done by the system PdV,
and the particle number change dN:

dU =dQ - PdV + udN

For electrons in semiconductors or metals, the mechanical work term can be
neglected and the chemical potential 1 equals the Fermi level E;:
dQ =dU —E;dN

Consider a slab of material in which heat energy, carried by the electrons, is flowing
from left to right, as shown:
Suppose each carrier

—> J, J has energy E
- Jy _

=J,=EJy
- ),

Suppose the heat energy flux (units: Watts/cm?) is J,;,, the internal energy flux is
Jy (units: Watts/cm?) , and the carrier number flux is Jy (units: #cm?) , then:

Jih =Ju —Erdn =(E-Ef )y

The above relation is used to compute the thermal energy flow due to electrons
in materials
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Thermal Current from Temperature Gradient

A temperature gradient in a conductive material results in heat flow (thermal
current) because of electron flow

* Consider electrons in the conduction band of a n-doped semiconductor or a metal
* There is no applied field but there is a temperature gradient

* As the electrons move from the hot side to the cold side, they also transfer thermal
energy

T T2

VFT (F) #0

We have already solved for the distribution function:
£(K,7) =t (k.7 )= 7 Vefo (K, 7). V(K)
-\ ok, F)(EK)-E N
~ fo(k,r )+1' Oa(E r )( (T%r_) f ]V,—'T(r )V(k)

The contribution to heat flow by the electrons can be obtained by multiplying the
distribution function by (E(IZ)— E; )V(ﬁ) and summing over all states:

- di  of,(K,7)EK)-E ) 1= (e = .
Jth(r)=2xFéZ(2”)d T 6(E )( (T)(F)f)z[v(k).VJ(r)]v(k):—xth.V,~T(r)

Here, &, is the Thermal Conductivity tensor of the electrons

—
ECE 407 - Spring 2009 - Farhan Rana — Cornell University



Thermal Current from Temperature Gradient: Semiconductors
T1 T2

V:T(F)=0

sn)=2x 1 % AEAEREET ) 7.1(0)0)- -0 0

Example — n-doped semiconductor at high temperatures:

Consider a semiconductor at high temperatures and assume that Maxwell-Boltzmann
statistics apply:

KT 1 ~ER)-E -
ka,r):szt? (E(k)}-E; ()T { Ec —Ef > KT

For the conduction band of a semiconductor with the following dispersion:
2
E(IZ)=E0+%IZT MK v({K)=m"".nK

The thermal conductivity of the electrons comes out to be:

_ (K[ (Eec —Ef )P +(d +2)E —E KT +(d/2+2)(d/2+1)(KT)? |
(%) X .
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Thermal Current from Temperature Gradient: Metals
T1 T2

V,—‘T(F) #0

- dik  af, (K,F)(EWK)-E ] (- () = R
Jth(r)=2xFéz(2”)d T 6(E )( (T)(F)f)z[v(k).V,—T(r)]v(k):—xth.V,-T(r)

Example — metal or a n-doped semiconductor at low temperatures:
In this case: -
of !k r ’ —
-Fe 2~ o(E(k)-&)
oE
However, using the above approximation expression will give a zero for &i;, so one

has to be more careful. For the conduction band with the following isotropic
dispersion: 122

2Megf

E(K)=E, +

The thermal conductivity of the electrons comes out to be:

2 2 2
_ K . = KT | =
Kin =§%(?J KT ®VF)ng(Ef)e2’:”3[e2J”

Kth _ 7

2 2
K
To 3 (e] —— > Wiedemann-Franz Law for metals
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Thermal Currents from Electric Fields and Density Gradients

V:T(F)=0 E#0 V. [E.(F)-E;(F)]=0

* Consider electrons in the conduction band of a n-doped semiconductor or a metal
* There is no temperature gradient but there is an applied field and possibly a carrier
density gradient as well

* As the electrons move they also transfer thermal energy

We have already solved for the rglgvant distribution function:
tK,7)~1o (K. F)+er %E’r)v(uz). [E -1Vl ()-E (r)]j

The contribution to heat flow by electrons can be obtained by multiplying the
distribution function by (E(IZ)— Ef )V(|Z) and summing over all states:

sn@)=20rx 1 8K L)) ofe) (- 1v, .)€ 00|60

rBz(27)" OE

=T ;?.[E —er[Ec (F)-Eq (F)])

Here, k¥ is the same tensor found earlier which related electrical current to a
temperature gradient
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Electrical Currents and Thermal Currents

VFT(F);EO E #0 VFEf (F);:O

In the most general case, when electric field, density gradient, and/or a temperature
gradients are all present, the electrical and thermal currents can be written as,

36)=7(E- 19 [Ec()- £ O] -R9,7()
30 (O)=T )& - Vel r) - (O] 5in 9,7 (F)

Or in matrix form as:

e e 2

The above equations can be used to evaluate the material responses in different
situations of practical interest
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The Peltier Effect and the Peltier Tensor
Consider a material in which thermal (or density) gradients are not present. We have:
J(r)=a.E(r
jt(h ()F) =T (S"))KE(F) } |::> Jin(F)=T(F) P J(F)=T.J(F)
II is called the Peltier tensor and is related to the Seebeck tensor. The relation,
Jin(F)=T1.I(F) { For an isotropic material: II=T S
implies that a thermal current accompanies an electrical current

Now consider current flow in a double junction of materials A and B, as shown below,
and suppose that IT, < Il5 . The electrical current J is constant everywhere.

_B- BE__, °

Jihe Jtha Jthe

Jthg —Jtna = (g —TTn)J Jihg —Jiha = (g —~II4)J

Since material B carries more thermal current than material A for the same electrical
current, the extra thermal current needs to be extracted out from the left junction
otherwise thermal energy will pile up at that junction and make it hot. Similarly, heat
must be provided to the right junction otherwise it will loose heat and become cold

This principle is used in electronic thermoelectric coolers (or Peltier coolers)
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Thermoelectric Coolers for Refrigeration

Te Cold Surface BiSe or BiTe
R;‘I Rp n r;’ AT =1,-T,
Gnth Gppth . Pin= Number of pn units in series

R = Electrical resistance

I ™\ G = Thermal conductance (electronic
A\l as well as lattice contributions)

Thermal energy absorbed from the n-semiconductor and top metal junction: (IT,, —I1,)|
Thermal energy absorbed from the p-semiconductor and top metal junction: (Hp -1, )I
Total thermal energy absorbed from the top metal in single cell: (TT, T, )| =T (S, =S, )

Note that the Seebeck and the Peltier coefficients are negative for n-semiconductors

After taking into account Joule losses, and heat conductance, the coefficient of
performance (COP) for cooling is:

COP - Heat removed fromcoldbody T (Sp - Sn) - (Gmh +Gpth )AT - IZ(Rn +R, )/2

" Work done by the current source AT(Sp -So )l +12(R, +Ry,)

COP - = TC_I_ (Carnot limit for refrigerators) ~ when R,G50
h~'c
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Thermoelectrics for Power Generation

BiSe or BiTe
Rp‘ Rp n Al TAT=Th-Te
Gnih Gppth P P N = Number of pn units in serie
R = Electrical resistan
Roxt | G = Thermal conductance (electronic
/N as well as lattice contributions)
A thermoelectric cooler operated in reverse acts like a heat engine
The power conversion efficiency is given by: R
ex AT(S, -S, )
_ Power delivered to the external load _ NR, + Rp J+ Rex )
Heat lost to the cold body Th (Sp =S )I + (Gmh +Gpih )AT + '2(Rn + Rp)/2
where: | - (Sp -Sn) AT

NiRp +Rp )+ Rex
n— Th_l_;TC (Carnot limit for heat engines) when R,G -0
h

(Sp _Sn)2

A commonly used figure of merit for a pn thermoelectricis: Z = (R R XG TG )
n p nth pth

oth COP and 7 approach the Carnot values as Z — «
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Thermoelectric Figure of Merit and 3D Parabolic Band Limit

S%T
Kith

In the ideal scenario where lattice contribution to the thermal conductivity is

much smaller compared to the electronic contribution, and the semiconductor is

reasonably well doped ( E.-E; ~ 0.5KT ), then:

The FOM is usually expressed as the dimensionless product ZT: 7T =

2
_S%T (0.5 +5/2) _ o078

N Independent of most
Kih (0.5*0.5+5%0.5+35/4)

ZT .
material parameters!

In experiments, electronic i, is measured
under conditions of zero current, which
. 3 i Values of ZT for Various Materials
gives: B R
Kmeasured = & (1 —-7T ) -B' AgPb,_SuTe_, LAST (n)
1.6
1.4

1.2+

NaPy,_StTe, SALT ()

= The best measured value of ZT to be

expected is, N o
(Z T)measured - AN — 3.55 o/
-zt 7 >

= a value of ~3-4 is the maximum upper 021

limit for ZT for 3D parabolic band materials ©°_~
and typically it is 2-4 times smaller due to 0 200 400 600 8OO 1000 1200 1400
ostly lattice thermal conductivity Temperature (K)
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