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Handout 30

Optical Processes in Solids and the Dielectric Constant

In this lecture you will learn:

• Linear response functions
• Kramers-Kronig relations
• Dielectric constant of solids 
• Interband and Intraband contributions to the dielectric constant of 
solids
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A charge dipole consists of a negative and a positive charge separated by some 
distance:

d


Q

Q

Dipole moment of a charge dipole is a vector       such that:p


dQp




Charge Dipole, Dipole Moment, and Polarization Density

Polarization density vector        of a medium consisting of charge dipoles is the 
product of the number N of dipoles per unit volume (i.e. dipole density) and the 
strength of each dipole given by    :
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Dielectric Constant of Non-Polar Materials

Dielectric in an E-fieldNon-Polar Dielectric Material (Non-polar 
Insulator or Intrinsic Semiconductor)
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Material gets polarized when placed in an electric field (i.e. develops charge 
dipoles) because the electron cloud shifts relative to the nuclei
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strength of one dipole)
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Dielectric Constant of Polar Materials

In polar materials, material polarization in an E-field has two contributions:

a) The phonon contribution:

b) The electron contribution:

Polar Dielectric Material 
(Polar Insulator or 
Intrinsic Semiconductor)
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to Polarization

The total (phonon + electron)  
contribution to Polarization

 EPPED pheopheo


  1

 pheo   1

EP phoph




EP eoe




Cation Anion



3

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Dielectric Constant of Materials: Phonon and Electron Contributions
In general, the susceptibilities are frequency dependent: 

       pheo  1

       pheo  01

If one is working at frequencies that are too small compared to the characteristic 
frequencies of               then one may make the approximation: e

      pho

If we define:
    01 eo  

then for small frequencies:

Comparing with the expression in handout 19:    
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We now find the electronic 
contribution

Electrons respond much faster than the lattice
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High Frequency Dielectric Constant of Solids

Consider a sinusoidal E&M wave of frequency  propagating in a solid:

      ti
o erEtrqEntrE   ,Re.cosˆ,

 E
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q


Where the electric field “phasor” is:

  rqi
o eEnrE

 .ˆ, 

Similarly, the magnetic field phasor is:

And the two field are related by the two Maxwell equations:

    rqi
o eHnqrH
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Faraday’s Law

Ampere’s Law

These two equations together give the dispersion relation of the E&M wave:
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Strategy to Calculate the Dielectric Constant of Materials

1) Start with the Hamiltonian describing the interaction of the electrons with the 
electromagnetic field:
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2) Find out how the electron wavefunctions (i.e. Bloch 
functions) get modified using standard first order 
perturbation theory:

 
m k

kmkmknkn tc
'

',',,new, 
 

3) From the modified wavefunctions, calculate the electron 
charge density, and then the dipole density

The above procedure, although doable, is a little complicated 
and we will use an alternate approach!
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Refractive Index of Solids

The refractive index of a material is defined as:    
o

n

 

The wave dispersion relation is then:
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And the electric field phasor can be written as:
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The refractive index usually has real and imaginary parts:
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The electric field phasor is then:
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The imaginary part of the index describes 
wave decay (or wave amplification if gain 
is present)
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Imaginary Part of the Refractive Index and the Loss Coefficient

Stimulated 
absorption
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We have already seen that stimulated absorption results in a wave to decay in 
a medium (optical loss):
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Where:

But we also have:
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This means the imaginary part of the refractive index is:
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High Frequency Dielectric Constant of Solids: Imaginary Part

The refractive index of a material is defined as:    
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Therefore, using the fact that:

               
          



"'2'"'

"'2'"'
2

222

nnini

nnininnn

oo

oooo





    '" nn 

This implies:

      "'2" nno

 
 

          







FBZ
3

32

2

2

2
2ˆ." 


 





kEkEkfkf

kd
nP

m
e

vccvcv

Using the expression for the imaginary part of the refractive index we get:

Question: What is the real part of the dielectric constant?

    2''  noand
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Linear Response Functions

Linear Response Functions: 

In a linear time invariant (LTI) system, the stimulus phasor S() is related to the 
response phasor R() by a linear response function ():

      SR 

The linear system must satisfy the following two properties:

i) It must be causal (system cannot respond before the stimulus is applied)
ii) A real stimulus S(t) must result in a real response R(t) (with no imaginary 
component)   

The second condition gives:

      "' i

            ""and''* 

Most responses of solids are expressed in terms of linear response functions. 
Examples include: 

 
 
Conductivity:

Dielectric Constant:
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Linear Response Functions and Kramers-Kronig Relations

The two conditions, listed on previous slide, dictate that the real and imaginary parts 
of any response function cannot be independent – they must be RELATED!

      SR        "' i

This relationship between the real and the imaginary parts of the response functions 
is captured by the Kramers-Kronig relations:
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• If one knows the real part for all frequencies, then one can find the imaginary part 
using Kramers-Kronig relations

• Conversely, if one knows the imaginary part for all frequencies, then one can find 
the real part using Kramers-Kronig relations

PROOF OF KRAMERS-KRONIG RELATIONS GIVEN IN APPENDIX

(1)

(2)
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High Frequency Dielectric Constant of Solids: Real Part

 
 

          







FBZ
3

32

2

2

2
2ˆ." 


 





kEkEkfkf

kd
nP

m
e

vccvcv

We have:

And from the Kramers-Kronig relations we know:
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High Frequency Dielectric Constant of Solids
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• Note that our expression for dielectric constant takes 
into account interband transitions involving only a single 
valence band and a single conduction band

• A more realistic expression would include interband 
transitions among all bands of the solid k
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High Frequency Dielectric Constant of Solids
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• The above expression includes contributions from 
interband transitions among all pairs of bands of the 
solid

• Usually the most important and dominant contribution 
at frequencies of interest comes from interband 
transitions between the highest occupied bands (i.e. the 
valence bands) and the lowest unoccupied band (i.e. the 
conduction bands)
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Bandgaps and the High Frequency Dielectric Constant
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Bandgaps and the High Frequency Dielectric Constant
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Make some very rough estimates:
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 Materials with larger bandgaps will have smaller real parts of dielectric constants 
(and, therefore, smaller real parts of refractive indices)
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photons

holes

electrons

A Heterostructure Laser (Band Diagram)

N-doped
P-doped

metal

A Ridge Waveguide Laser Structure

Semiconductor Heterostructure Lasers

Efe

Efh

In semiconductor heterostructure laser, the wider bandgap material has smaller 
refractive index than the narrower bandgap material

The combination of narrow and wide bandgap materials act like a dielectric optical 
waveguide that confines and guides the photons

The heterostructure not only confines the carriers but it also confines the photons!!

InP

InP
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Dielectric Constant: Case of Non-Zero Conductivity

k




E
We have obtained an expression for the dielectric constant 
that incorporated interband optical processes and phonons

What if the material also contained large densities of electrons 
or holes or both (i.e. what if the material was doped and 
conductive)?

E
f

Go back to Maxwell equations:
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Faraday’s Law

Ampere’s Law

New term (current density due to electrons or holes or both) 
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Where:
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      EJ




The second term is the 
intraband or the free-carrier 
contribution
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Dielectric Constant: Non-Zero Conductivity

k




EWe have:
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Use the Drude model for the frequency dependent conductivity:
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The equation for the electron drift velocity is (assuming 
parabolic/isotropic bands in 3D):

In phasor notation (assuming a sinusoidal electric field):

The current density is:
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Interband optical 
processes and 
phonons

Intraband optical 
processes

Dielectric Constant: Non-Zero Conductivity
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Assuming non-zero densities for both electrons and 
holes the total conductivity becomes:

We have:
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The Plasma Frequency 
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Suppose we have a metal or a n-doped semiconductor for which:
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Where the plasma frequency is defined as:
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For metals:

Hz104~2 15p

For semiconductors:

Hz1010~2 1311 p

(UV-blue light frequency)

(Terahertz frequency)
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Putting Everything Together
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Electronic part 
(Interband)

Phononic
part

Electronic Parts:

First line is the interband part and the second line is the inraband or the free-carrier part

Second line is non-zero only for conducting materials and has no zero frequency limit

Phononic Part:
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Conductivity part (electronic 
intraband part or the free carrier part)
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Polaritons

Polaritons consist of electromagnetic waves coupled with some material wave or 
material excitation 

It is the name given to the phenomena where electromagnetic energy becomes 
strongly coupled with material degrees of freedom

Some common examples of polaritons are:

1) Phonon-Polaritons

Electromagnetic waves become strongly coupled with the optical phonons of a polar 
medium

2) Plasmon-Polaritons

Electromagnetic waves become strongly coupled with the plasma waves of a 
conducting medium

3) Exciton-Polaritons

Electromagnetic waves become strongly coupled with excitons (bound electron-hole 
pairs)
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Transverse and Longitudinal Polaritons

For any medium:

Longitudinal Polaritons:
In longitudinal polaritons, the E-field has a non-zero divergence but the D-field has a 
zero divergence:

0.0.0. 
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 .ˆIf the E-field has a wave-like form:

Then: 0ˆ.0.  nqE


 E-field has a non-zero component in the direction of wave propagation

Transverse Polaritons:
In transverse polaritons, the E-field and the D-field both have a zero divergence:
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Then: 0ˆ.0.  nqE


 E-field has no component in the direction of wave propagation
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Longitudinal Polaritons
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Suppose the E-field has a wave-like form:

  0..

0.
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The D-field is given as:

For longitudinal polaritons we must have:

The only way that both these equations can hold is if the frequency of the longitudinal 
polaritons is such that:

  0eff
The above equation gives the frequency of the longitudinal polaritons
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Longitudinal Polaritons

Longitudinal Phonon-Polaritons: Consider a non-conducting polar medium (polar 
semiconductor or a polar insulator) whose dielectric constant at frequencies much 
smaller than the material bandgap energies is approximately,
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The condition,                  gives:  0eff
LO 

The longitudinal phonon-polaritons are just the polar longitudinal optical phonons!

Longitudinal Plasmon-Polaritons: Consider a conducting medium (like gold, silver) 
whose dielectric constant at frequencies much larger than the phonon frequencies 
but much smaller than the material bandgap energies is approximately,
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The longitudinal plasmon-polaritons are just the plasma waves!

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Transverse Polaritons
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Suppose the E-field has a wave-like form:
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The D-field is given as:

For transverse polaritons we must have:

The plane wave is a solution of the wave equation if:
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The above equation gives the dispersion of the transverse polaritons

The electromagnetic wave equation when                is:
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Transverse Phonon-Polaritons

Consider a non-conducting polar medium (polar semiconductor or a polar insulator) 
whose dielectric constant at frequencies much smaller than the material bandgap 
energies is approximately,
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The dispersion relation:

gives the following equation:

     022222224   oTOoLO cqcq
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The resulting dispersion relation is plotted in 
the Figure

Note that there is a band of frequencies in 
which no electromagnetic wave can 
propagate in the medium
(no propagating wave mode exists)

This band is called the Restsrahlen band

Reststrahlen band
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Transverse Plasmon-Polaritons

Consider a conducting medium (like gold, silver) whose dielectric constant at 
frequencies much larger than the phonon frequencies but much smaller than the 
material bandgap energies is approximately,
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The dispersion relation:

gives the following equation:
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The resulting dispersion relation is plotted in 
the Figure

Note that no electromagnetic wave can 
propagate in the medium with a frequency 
smaller than the plasma frequency
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APPENDIX: Kramers-Kronig Relations (Proof)

The linear response function is ():

            ""and''* 
Causality: 

      "' i

      



''' tSttdttR 

Causality implies that the system cannot exhibit response to an input before the 
input occurs:

Inverse FT gives:      
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which gives:       


t
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Reality: 

Real inputs must result in a real response. This condition gives:

In a linear time invariant (LTI) system, the stimulus phasor S() is related to the 
response phasor R() by:

      SR 

Infinite Frequency Response: 

No physical system can respond at infinite frequencies, so: 

  0
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Kramers-Kronig Relations (Proof)

  0for0  tt

The causality condition is:

The function (), when considered as an analytic function in the complex plane, 
cannot have any  pole in the upper half of the complex plane for the causality 
condition to hold

Consider the following contour integral over the contour shown:
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Since there are no poles in the upper half plane, 
the closed contour contains no poles, and the 
contour integral must be zero

 

     

    0
2'

'
2

'

0
'

'
2

'
'

'
2

'
'

'
2

'

0
'

'
2

'

21


























































id

ddd

d

cc

c1

R=∞

0



17

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Kramers-Kronig Relations (Proof)
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Where the following relations have been used to get the second integrals:

        ""and'' 

In cases where the real part of () may not be zero at infinite frequencies, as it 
happened in the case of the dielectric constant, we just repeat the entire procedure 
from the beginning with () – ’(∞) instead of () to get:
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