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Handout 3

Free Electron Gas in 2D and 1D

In this lecture you will learn:

• Free electron gas in two dimensions and in one dimension
• Density of States in k-space and in energy in lower dimensions
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Electron Gases in 2D

• In several physical systems electron are confined to move in just 2 
dimensions

• Examples, discussed in detail later in the course, are shown below:

Semiconductor Quantum Wells:

GaAs

GaAs
InGaAs 
quantum well 
(1-10 nm)

Graphene:

Semiconductor quantum 
wells can be composed of 
pretty much any 
semiconductor from the 
groups II, III, IV, V, and VI of 
the periodic table

Graphene is a single atomic layer 
of carbon atoms arranged in a 
honeycomb lattice TEM 

micrograph

STM 
micrograph
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Electron Gases in 1D

• In several physical systems electron are confined to move in just 1 dimension

• Examples, discussed in detail later in the course, are shown below:

Semiconductor Quantum 
Wires (or Nanowires):

GaAs

InGaAs
Nanowire

GaAs

Semiconductor Quantum 
Point Contacts 
(Electrostatic Gating):

GaAs

InGaAs
Quantum well

Carbon Nanotubes 
(Rolled Graphene 
Sheets):

metal
metal
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Electrons in 2D Metals: The Free Electron Model

The quantum state of an electron is described by the time-independent 
Schrodinger equation:

       rErrVr
m

   2
2

2

Consider a large metal sheet of area A= Lx Ly : 

xL

yL
Use the Sommerfeld model:

• The electrons inside the sheet are confined in a 
two-dimensional infinite potential well with zero 
potential inside the sheet and infinite potential 
outside the sheet

• The electron states inside the sheet are given 
by the Schrodinger equation

 
  sheet  the  outside    for

sheet the inside    for0

rrV

rrV







free electrons 
(experience no 
potential when inside 
the sheet)

yxLLA 
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Born Von Karman Periodic Boundary Conditions in 2D

   rEr
m

   2
2

2
Solve:

Use periodic boundary conditions:

   
   zyxzLyx

zyxzyLx

y

x

,,,,

,,,,





 These imply that each 

edge of the sheet is 
folded and joined to 
the opposite edge

Solution is:    ykxkirki yxe
A

e
A

r
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The boundary conditions dictate that the allowed values of kx , and ky are such 
that:

 

 
y

y
Lki

x
x

Lki

L
mke

L
nke

yy

xx





2
1

2
1



 n = 0, ±1, ±2, ±3,…….

m = 0, ±1, ±2, ±3,…….

xL

yL

yxLLA 
x

y
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Born Von Karman Periodic Boundary Conditions in 2D
Labeling Scheme:

All electron states and energies can be labeled by the corresponding k-vector

 
m

k
kE

2
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  rki

k e
A
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Momentum Eigenstates:

Another advantage of using the plane-wave energy eigenstates (as opposed to the 
“sine” energy eigenstates) is that the plane-wave states are also momentum 
eigenstates

Momentum operator: 
i

p
̂      rkr

i
rp kkk





   ˆ

Normalization: The wavefunction is properly normalized:   1
22  rrd k




Orthogonality: Wavefunctions of two different states are orthogonal:

   
 

kk

rkki

kk A
e

rdrrrd 
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'
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Velocity:

Velocity of eigenstates is:    kE
m
k

kv k






 

1
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States in 2D k-Space

xL
2

yL
2

k-space Visualization:

The allowed quantum states states can be 
visualized as a 2D grid of points in the entire 
“k-space”

y
y

x
x L

mk
L

nk
 22



Density of Grid Points in k-space:

Looking at the figure, in k-space there is only one grid point in every small 
area of size:

 
ALL yx

2222 




















 22
A There are                grid points per unit area of k-space Very important 

result

n, m = 0, ±1, ±2, ±3, …….

xk

yk
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The Electron Gas in 2D at Zero Temperature - I
• Suppose we have N electrons in the sheet. 

• Then how do we start filling the allowed quantum states? 

• Suppose T~0K and we are interested in a filling scheme 
that gives the lowest total energy.

xk

yk

N

The energy of a quantum state is:

   
m

k

m

kk
kE yx

22

22222






Strategy:
• Each grid-point can be occupied by two electrons 
(spin up and spin down)

• Start filling up the grid-points (with two electrons 
each) in circular regions of increasing radii until 
you have a total of N electrons

• When we are done, all filled (i.e. occupied) 
quantum states correspond to grid-points that are 
inside a circular region of radius kF

Fk

xL

yL

yxLLA 
x

y
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xk

yk

Fk

Fermi circle

• Each grid-point can be occupied by two electrons (spin 
up and spin down)

• All filled quantum states correspond to grid-points that 
are inside a circular region of radius kF

Area of the circular region = 

Number of grid-points in the circular region = 

2
Fk

 
2

22
Fk

A 




Number of quantum states (including 
spin) in the circular region =  

22
2 22

2 FF k
A

k
A







But the above must equal the total number N of electrons inside the box:

2

2 Fk
A

N




2
density  electron

2
Fk

A
N

n 

  2

1

2 nkF 

The Electron Gas in 2D at Zero Temperature - II

Units of the electron 
density n are #/cm2

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

xk

yk

Fk

Fermi circle

• All quantum states inside the Fermi circle are filled (i.e. 
occupied by electrons) 
• All quantum states outside the Fermi circle are empty

Fermi Momentum:
The largest momentum of the electrons is:
This is called the Fermi momentum
Fermi momentum can be found if one knows the electron 
density:

Fk

  2

1

2 nkF 

Fermi Energy:
The largest energy of the electrons is:

This is called the Fermi energy EF :
m
kF

2

22

m
k

E F
F 2

22


Fermi Velocity:
The largest velocity of the electrons is called the Fermi velocity vF :

m
k

v F
F




The Electron Gas in 2D at Zero Temperature - III

m
n

EF
2

 or FE
m

n 2
Also:
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 22
A

Recall that there are                grid points per unit area of k-
space

 So in area                     of k-space the number of 
grid points is:         

yx dkdk

   
kd

A
dkdk

A
yx

2
22 22 



xk

yk
xdk

ydk

 The summation over all grid points in k-space can be replaced by an area integral 

  2

2

  all 2
kd

A
k





Therefore:

 
 

 kf
kd

AkfN
k





 

2

2

  all 2
22



The Electron Gas in 2D at Non-Zero Temperature - I

 kf


is the occupation probability of a quantum state
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The Electron Gas in 2D at Non-Zero Temperature - II

The probability          that the quantum state of wavevector     is occupied by an 
electron is given by the Fermi-Dirac distribution function:

k
 kf



     TKEkE fe
kf


 



1

1

Therefore:

 
 

     KTEkE fe

kd
Akf

kd
AN


 






1

1

2
2

2
2

2

2

2

2



   
m

k

m

kk
kE yx

22

22222





Where:

Density of States:

The k-space integral is cumbersome. We need to convert into a simpler form – an 
energy space integral – using the following steps:

dkkkd 22 


and dk
m
k

dE
m
k

E
222

2




Therefore:

  


0
2

0
2

2

2
2 dE

m
A

dkk
A

kd
A
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The Electron Gas in 2D at Non-Zero Temperature - III

         KTEEDKTEkE ff e
EgdEA

e

kd
AN 



 





1

1

1

1

2
2 2

0
2

2






Where:  
22


m
Eg D  Density of states function is constant 

(independent of energy) in 2D

g2D(E) has units: # / Joule-cm2

The product g(E) dE represents the number of 
quantum states available in the energy interval 
between E and (E+dE) per cm2 of the metal

xk

yk

Suppose E corresponds to the inner circle 
from the relation:

m
k

E
2

22


And suppose (E+dE) corresponds to the outer 
circle, then g2D(E) dE corresponds to twice the 
number of the grid points between the two 
circles
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 fEEf 

EfE

 Eg D2

The expression for N can be visualized as the 
integration over the product of the two functions:

The Electron Gas in 2D at Non-Zero Temperature - IV

       fDKTEED EEfEgdEA
e

EgdEAN
f











2
0

2
0 1

1

Where:  
22


m
Eg D 

Check: Suppose T=0K:

E
0

1

fE

T = 0K

     

f

f

D

E

fD

E
m

n

E
m

A

EgdEAEEfEgdEAN
f

2

2

2
0

2
0

    
















Compare with the previous result at T=0K:

FE
m

n 2
  At T=0K (and only at T=0K) the Fermi level 

Ef is the same as the Fermi energy EF

 fEEf 
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The Electron Gas in 2D at Non-Zero Temperature - V

    















 


TK

E

KTEED

f

f
eTK

m

e
EgdEn 1log

1

1
22

0 

For T ≠ 0K:

Since the carrier density is known, and does not change with temperature, the 
Fermi level at temperature T is found from the expression

In general, the Fermi level Ef is a function of temperature and decreases from EF as 
the temperature increases. The exact relationship can be found by inverting the 
above equation and recalling that: 

 











 1log KT

E

f

F

eKTTE

FE
m

n 2


to get:
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Total Energy of the 2D Electron Gas

The total energy U of the electron gas can be written as:

   
 

   kEkf
kd

AkEkfU
k





  2

2

  all 2
22



Convert the k-space integral to energy integral:    EEEfEgdEAU fD 


2
0

The energy density u is:    EEEfEgdE
A
U

u fD 


2
0

Suppose T=0K:

  2
22

0 2
FD

E
E

m
EEgdEu

F




FE
m

n 2
Since:

We have: FEnu
2
1





9

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

2D Electron Gas in an Applied Electric Field - I

xk

yk

Electron distribution in k-space 
when E-field is zero

xk

yk

Electron distribution is shifted in 
k-space when E-field is not zero

xEE x ˆ


  E
e

ktk




 


Distribution function:  kf


Distribution function: 





  E

e
kf





 

E
e 






Since the wavevector of each electron is shifted by the same amount in the 
presence of the E-field, the net effect in k-space is that the entire electron 
distribution is shifted as shown

 kf


xL

yL

E
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2D Electron Gas in an Applied Electric Field - II

xk

yk

Electron distribution is shifted in 
k-space when E-field is not zero

E


Distribution function: 





  E

e
kf





 

E
e 




Current density (units: A/cm)

 
 kvE

e
kf

kd
eJ















 


 2

2

2
2

Do a shift in the integration variable:

 
 

 
 

 
 

EE
m
en

J

Ekf
kd

m
e

J

m

E
e

k
kf

kd
eJ

E
e

kvkf
kd

eJ

























































 









 

2

2

22

2

2

2

2

2
2

2
2

2
2

Where:
m
en 

2


Same as the Drude result - but 
units are different. Units of  are 
Siemens in 2D

electron density = n (units: #/cm2)
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Electrons in 1D Metals: The Free Electron Model

The quantum state of an electron is described by the time-independent 
Schrodinger equation:

       xExxVx
xm

 



 2

22

2


Consider a large metal wire of length L : 

L

Use the Sommerfeld model:

• The electrons inside the wire are confined in a 
one-dimensional infinite potential well with zero 
potential inside the wire and infinite potential 
outside the wire

• The electron states inside the wire are given by 
the Schrodinger equation

 
    wirethe  outside    for

 wirethe inside    for0

xxV

xxV




free electrons 
(experience no 
potential when inside 
the wire)
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Born Von Karman Periodic Boundary Conditions in 1D

Solve:

Use periodic boundary conditions:

   zyxzyLx ,,,,  
These imply that each 
facet of the sheet is 
folded and joined to 
the opposite facet

Solution is:    xki xe
L

x
1



The boundary conditions dictate that the allowed values of kx  are such that:

 
L

nke x
Lki x 2

1  n = 0, ±1, ±2, ±3,…….

   xEx
xm

 




2

22

2


L
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States in 1D k-Space

L
2

k-space Visualization:

The allowed quantum states states can be 
visualized as a 1D grid of points in the entire 
“k-space”

L
nkx

2


Density of Grid Points in k-space:

Looking at the figure, in k-space there is only one grid point in every small 
length of size:









L
2

2
L There are           grid points per unit length of k-space Very important 

result

n = 0, ±1, ±2, ±3, …….

xk0
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xk

Fk

Fermi points

• Each grid-point can be occupied by two electrons (spin 
up and spin down)

• All filled quantum states correspond to grid-points that 
are within a distance kF from the origin

Length of the region = 

Number of grid-points in the region = 

Fk2

Fk
L

2
2




Number of quantum states (including 
spin) in the region = 

But the above must equal the total number N of electrons in the wire:


Fk

LN
2




Fk

L
N

n
2

density  electron 

2
n

kF




The Electron Gas in 1D at Zero Temperature - I

Units of the electron 
density n are #/cm

0

Fk

Fk
L

2
2

2 
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• All quantum states between the Fermi points are filled (i.e. 
occupied by electrons) 
• All quantum states outside the Fermi points are empty

Fermi Momentum:
The largest momentum of the electrons is:
This is called the Fermi momentum
Fermi momentum can be found if one knows the electron 
density:

Fk

Fermi Energy:
The largest energy of the electrons is:

This is called the Fermi energy EF :
m
kF

2

22

m
k

E F
F 2

22


Fermi Velocity:
The largest velocity of the electrons is called the Fermi velocity vF :

m
k

v F
F




The Electron Gas in 1D at Zero Temperature - II

m
n

EF 8

222
 or FE

m
n


8

Also:

xk

Fermi points

0

2
n

kF
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2
LRecall that there are            grid points per unit length of k-

space

 So in length            of k-space the number of 
grid points is:         

xdk

xdk
L
2

xk
xdk

 The summation over all grid points in k-space can be replaced by an integral 




 2  all

x

k

dk
L

Therefore:

   x
x

k
x kf

dk
LkfN 



 2
22

  all


The Electron Gas in 1D at Non-Zero Temperature - I

 xkf is the occupation probability of a quantum state

0
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The Electron Gas in 1D at Non-Zero Temperature - II

The probability            that the quantum state of wavevector        is occupied by an 
electron is given by the Fermi-Dirac distribution function:

xk xkf

     TKEkEx
fxe

kf 


1

1

Therefore:

     KTEkE
x

x
x

fxe

dk
Lkf

dk
LN 







 


1

1
2

2
2

2


 
m
k

kE x

2

22
Where:

Density of States:

The k-space integral is cumbersome. We need to convert into a simpler form – an 
energy space integral – using the following steps:

and dk
m
k

dE
m
k

E
222

2




Therefore:




 0 2
22

2
2


dk

L
dk

L x

E
m

dEL
dk

L x 12
2

2
0



 

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

0

The Electron Gas in 1D at Non-Zero Temperature - III

       KTEEDKTEkE
x

ffx e
EgdEL

e

dk
LN 







 





1

1

1

1
2

2 1
0

Where: Density of states function in 1D

g1D(E) has units: # / Joule-cm

The product g(E) dE represents the number of 
quantum states available in the energy interval 
between E and (E+dE) per cm of the metal

xk

Suppose E corresponds to the inner points 
from the relation:

m
k

E
2

22


And suppose (E+dE) corresponds to the outer 
points, then g1D(E) dE corresponds to twice the 
number of the grid points between the points 
(adding contributions from both sides)

 
E

m
Eg D

12
1
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 fEEf 

EfE

 Eg D1

The expression for N can be visualized as the 
integration over the product of the two functions:

The Electron Gas in 1D at Non-Zero Temperature - IV

Where:

Check: Suppose T=0K:

E
0

1

fE

T = 0K

     

f

f

D

E

fD

E
m

n

E
m

L

EgdELEEfEgdELN
f









8

8
    

1
0

1
0








Compare with the previous result at T=0K:

 At T=0K (and only at T=0K) the Fermi level 
Ef is the same as the Fermi energy EF

       fDKTEED EEfEgdEL
e

EgdELN
f











1
0

1
0 1

1

 
E

m
Eg D

12
1




FE
m

n


8


 fEEf 
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The Electron Gas in 1D at Non-Zero Temperature - V

For T ≠ 0K:

Since the carrier density is known, and does not change with temperature, the 
Fermi level at temperature T is found from the expression

In general, the Fermi level Ef is a function of temperature and decreases from EF as 
the temperature increases. 

    KTEED
fe

EgdEn 






1

1
1

0
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Total Energy of the 1D Electron Gas

The total energy U of the electron gas can be written as:

       xx
x

x
k

x kEkf
dk

LkEkfU 


 2
22

  all


Convert the k-space integral to energy integral:    EEEfEgdELU fD 


1
0

The energy density u is:    EEEfEgdE
L
U

u fD 


1
0

Suppose T=0K:

 
3

8
23

1
0

F
D

E Em
EEgdEu

F




Since:

We have: FEnu
3
1



FE
m

n
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1D Electron Gas in an Applied Electric Field - I

xk

Electron distribution in k-space 
when E-field is zero

xk

Electron distribution is shifted in 
k-space when E-field is not zero

xEE x ˆ


  xxx E
e

ktk





Distribution function:  xkf Distribution function: 





  xx E

e
kf





E
e 






Since the wavevector of each electron is shifted by the same amount in the 
presence of the E-field, the net effect in k-space is that the entire electron 
distribution is shifted as shown

 xkf

E


L
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1D Electron Gas in an Applied Electric Field - II

Electron distribution is shifted in 
k-space when E-field is not zero

Distribution function: 





  xx E

e
kf





Current (units: A)

 xxx
x kvE

e
kf

dk
eI 






 



 


2

2

Do a shift in the integration variable:

 

 

 

EE
m
en

I

Ekf
dk

m
e

I

m

E
e

k
kf

dk
eI

E
e

kvkf
dk

eI

xx
x

xx

x
x

xxx
x






































 









 













2

2

2
2

2
2

2
2

Where:
m
en 

2


Same as the Drude result - but 
units are different. Units of  are 
Siemens-cm in 1D

electron density = n (units: #/cm)

xk

xEE x ˆ
xE

e
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