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Handout 29

Optical Transitions in Solids, Optical Gain, and 
Semiconductor Lasers

In this lecture you will learn:

• Electron-photon Hamiltonian in solids
• Optical transition matrix elements
• Optical absorption coefficients 
• Stimulated absorption and stimulated emission
• Optical gain in semiconductors
• Semiconductor heterostructure lasers

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Interactions Between Light and Solids 

The basic interactions between light and solids cover a wide variety of topics 
that can include:

• Interband electronic transitions in solids

• Intraband electronic transitions and intersubband electronic transitions

• Plasmons and plasmon-polaritons

• Surface plasmons

• Excitons and exciton-polaritons

• Phonon and phonon-polaritons

• Nonlinear optics

• Quantum optics

• Optical spintronics 
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Fermi’s Golden Rule: A Review

Now suppose a time dependent externally applied potential is added to the 
Hamiltonian:
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Consider a Hamiltonian with the following eigenstates and eigenenergies:

 integerˆ  mEH mmmo 

Suppose at time t = 0 an electron was in some initial state k:   pt   0

Fermi’s golden rule tells that the rate at which the electron 
absorbs energy         from the time-dependent potential 
and makes a transition to some higher energy level is 
given by:



   



  pmpm

m
EEVpW

2ˆ2

The rate at which the electron gives away energy         
to the time-dependent potential and makes a transition 
to some lower energy level is given by:



   



  pmpm

m
EEVpW

2ˆ2

E



E



ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Optical Transitions in Solids: Energy and Momentum Conservation

k




For an electron to absorb energy from a photon 
energy conservation implies:
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Momentum conservation implies:
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Intraband photonic transitions are not possible: 

For parabolic bands, it can be shown that intraband optical transitions cannot satisfy 
both energy and momentum conservation and are therefore not possible

Intraband

Intraband

Interband

Note that the momentum conservation principle is stated in terms of the crystal 
momentum of the electrons. This principle will be derived later. 

E
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Electromagnetic Wave Basics
Consider an electromagnetic wave passing through a solid with electric field 
given by:
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The vector potential associated with the field is:
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The power per unit area or the Intensity of the field is given by the Poynting vector:
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The photon flux per unit area is:
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The divergence of the field is zero:

    0,.,.  trAtrE
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Consider electrons in a solid. The eigenstates (Bloch functions) and eigenenergies 
satisfy:
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Electron-Photon Hamiltonian in Solids

where:

In the presence of E&M fields the Hamiltonian is:
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k




Interband

E

Optical Interband Transitions in Solids

  knnkno kEH 
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Suppose at time t = 0 the electron was sitting in the 
valence band with crystal momentum      :
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The transition rate to states in the conduction band is given by the Fermi’s 
golden rule:
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The summation is over all possible final states in the conduction band that have the 
same spin as the initial state. Energy conservation is enforced by the delta function.
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Optical Matrix Element
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Now consider the matrix element:
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Optical Matrix Element
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Interband momentum matrix element
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Crystal Momentum Selection Rule
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Interband

E

The wave vector of the photons is very small since 
the speed of light is very large

Therefore, one may assume that: 

Crystal Momentum Selection Rule:

We have the crystal momentum selection rule:
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Optical transitions are 
vertical in k-space
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Transition Rates per Unit Volume

Generally one is not interested in the transition rate for any one 
particular initial electron state but in the number of transitions 
happening per unit volume of the material per second  

The upward transition        rate per unit volume is obtained by 
summing over all the possible initial states per unit volume 
weighed by the occupation probability of the initial state and 
by the probability that the final state is empty: 
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If we assume, as in an intrinsic semiconductor, that the 
valence band is full and the conduction band is empty of 
electrons, then:
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Transition Rates per Unit Volume
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The integral in the expression above is similar to the density of states integral:
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Transition Rates per Unit Volume and Joint Density of States
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Transition Rates per Unit Volume

  g
r

cv
o E

m
nP

m
eA

R 













 


 







23

22

2
2 2

2

1
ˆ.

2
2




2

22
oA

I 

The power per unit area or the Intensity of the E&M wave is:
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Interband Momentum Matrix Elements:
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Recall the result from homework 7:
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The above result assumed diagonal isotropic conduction 
and valence bands and also that no other bands are 
present, and is therefore oversimplified 
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Because of transitions photons will be lost from the E&M wave traveling inside the 
solid. This loss will result in decay of the wave Intensity with distance travelled:
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Transition Rates per Unit Volume and the 
Absorption or Loss Coefficient

Momentum Matrix Elements
In bulk III-V semiconductors with cubic symmetry, the average value of the 
momentum matrix element  is usually expressed in terms of the energy  Ep as,

6
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Parameters at 300K GaAs AlAs InAs InP GaP

Ep (eV) 25.7 21.1 22.2 20.7 22.2

Note that the momentum matrix elements are independent of the direction of light 
polarization!
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Transition Rates per Unit Volume and Loss Coefficient

     xIxxIxxI  

The wave power loss (per unit area) in small distance x is 
x I(x)

The wave power loss in small distance x must also equal: 
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Values of () for most semiconductors can range from a few hundred cm-1 to 
hundred thousand cm-1
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Loss Coefficient of Semiconductors
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Direct Bandgap and Indirect Bandgap Semiconductors

Direct bandgap 
(Direct optical transitions)

Direct bandgap
(Indirect phonon-assisted transitions)
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Stimulated Absorption and Stimulated Emission 
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Throwing back in the occupation factors one can write more generally:

Stimulated Absorption:
The process of photon absorption is called stimulated absorption (because, quite 
obviously, the process is initiated by the incoming radiation or photons some of which 
eventually end up getting absorbed) 

Stimulated 
absorption
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An incoming photon can also cause the reverse 
process in which an electron makes a downward 
transition

This reverse process is initiated by the term in 
Hamiltonian that has the          time dependence:tie 
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Following the same procedure as for stimulated absorption, one can write the rate 
per unit volume for the downward transitions as:
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Stimulated Emission:
In the downward transition, the electron gives off its energy to the electromagnetic 
field, i.e. it emits a photon! The process of photon emission caused by incoming 
radiation (or by other photons) is called stimulated emission.  

Spontaneous Emission: 
Electrons can also make downward transitions even in the absence of any incoming 
radiation (or photons). This process is called spontaneous emission. 

Stimulated Emission and Spontaneous Emission

Spontaneous
emission
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Stimulated Absorption and Stimulated Emission

The net stimulated electronic transition rate is the difference between the 
stimulated emission and stmulated absorption rates:
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And the more accurate expression for the loss coefficient is then:
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Optical Gain in Semiconductors
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Note that the Intensity decays as:    0  xIexI x

What if  were to become negative? Optical gain !!

Optical gain is possible if:
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A negative value of  implies optical gain (as opposed to 
optical loss) and means that stimulated emission rate 
exceeds stimulated absorption rate
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Optical Gain in Semiconductors
Optical gain is only possible in non-equilibrium situations when the electron and 
hole Fermi levels are not the same

Suppose:
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Then the condition for optical gain at frequency is:
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The above is the condition for population inversion (lots of electrons in the 
conduction band and lots of holes in the valence band)
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Optical Gain in Semiconductors

The loss coefficient is a function of frequency:
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Semiconductor PN Heterojunctions
2cE

2vE

fE
2cE

2vE
fE

1cE

1vE

P-dopedN-doped

2vE

fE fE

P-doped

N-doped

fE

fLE
P-doped

N-doped
fRE

PN heterojunction 
in equilibrium

PN heterojunction 
in forward biaseVEE fRfL 

PN heterojunction

Electron and hole Fermi level 
splitting
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photons

stimulated and
spontaneous
emission

holes

electrons

A Heterostructure Laser (Band Diagram)

N-doped
P-doped

metal

A Ridge Waveguide Laser Structure

All lasers used in fiber optical communications 
are semiconductor lasers 

Semiconductor Heterostructure Lasers
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Non-equilibrium electron and hole populations 
can be sustained in a forward bias pn junction
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A commercial packaged
semiconductor laser

Semiconductor 
laser chip

actual laser
(the long strip)

Wire bond

fiber

Semiconductor Heterostructure Lasers


