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Handout 28

Ballistic Quantum Transport in Semiconductor Nanostructures

In this lecture you will learn:

• Electron transport without scattering (ballistic transport)
• The quantum of conductance and the quantum of resistance
• Quantized conductance

Rolf Landauer (IBM) 
(1927-1999)

Lester F. Eastman (Cornell)
(1928-)
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Electron Transport Physics in Nanoscale Systems

Hydrodynamic and ballistic transport

Quantized conductance

Coulomb blockage of tunneling and single electron transistors

Coherent carrier transport

Universal conductance fluctuations

Integer and fractional quantum Hall effects

Charge density wave and spin density wave transport

Anderson localization and weak localization

Metal-insulator transitions and Mott insulators

Molecular electronics and polarons

Strongly correlated electrons: Ferromagnets, aniterromagnets, and high-Tc 
superconductors, spin liquids, topological insulators 
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Conductors and Dissipation
Traditional View of Conductors:
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Power Dissipation in Conductors:

E&M (energy continuity equation) tells us that the power dissipation per 
unit volume of a resistor is:
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Characteristic Velocity for Conduction

Current Density:
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Consider a 3D solid in which the energy dispersion for 
conduction band near a band minimum is given by:
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Only electrons close to the Fermi energy contribute to the conductivity in 
metals or heavily doped semiconductors at low temperatures
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Characteristic Velocity for Conduction and Mean Free Path
Characteristic Velocity:

The characteristic velocity is the average velocity of those electrons that contribute to 
the conductivity: 
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For metals and heavily doped semiconductors at low temperatures:

For low doped semiconductors at high temperatures:
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The mean free path ℓ is defined as the average distance an electron travels before it 
scatters. It is given by: 

where  is the scattering time. 
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Mean Free Path:
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Ballistic Transport:

When the length L of the conductor becomes much 
smaller than the mean free path ℓ the transport is termed 
“ballistic” meaning that the electrons do not scatter 
during the time it takes to travel through the conductor 

Ballistic transport condition: L
Questions:
• What happens when L << ℓ ?

• The formulas for conductivity that have the scattering time  in them are clearly no 
longer valid since there is no scattering:

• What about dissipation?

Ballistic Electron Transport
The length scales involved in the smallest transistors and nanoscale devices, such as 
carbon nanotubes and molecular conductors, can be small enough so that the 
electrons do not scatter during the time it takes to travel through the device

Single atom transistor
(Cornell)

Carbon nanotube transistorIntel’s 30 nm transistor
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em

ne2



4

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Ballistic Electron Transport in a 1D Conductor

Consider a 1D conductor (example, a quantum nanowire) that is contacted at both 
ends by an external circuit. 

Drain Source

The dispersion relation for the electrons inside 
the quantum wire is:
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Electric Fields, Chemical Potentials, and Voltage Sources
Now suppose a voltage source is applied from outside:

Drain Source

L

V

In electronics, one never applies “electric fields” nor even “electrostatic potential 
differences” to circuits but only “chemical potential differences” by using voltage 
sources

The voltage source will raise the chemical potential (or the Fermi level) on one side of 
the conductor with respect to the other by an amount eV
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Electron Currents
At the left contact, the current due to electrons moving in the right direction is:
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At the right contact, the current due to electrons moving in the left direction is:
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Arrows indicate 
the direction of 
electron flow (not 
the direction of 
current, which is 
opposite)
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Ballistic Transport
Electrons do not scatter in the quantum 
wire. Therefore:

• All electrons that enter the wire from the 
left contact make it to the right contact
• All electrons that enter the wire from the 
right contact make it to the left contact

Total Current:

The net current is the sum of the currents 
due to the right-moving and left-moving 
electrons:
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Ballistic Transport Conductance
Total Current:
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Quantum of Conductance
The relation:

defines the quantum of conductance as:
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• The quantum of conductance is the smallest possible non-zero conductance of a 
completely ballistic conductor. Equivalently, the quantum of resistance is the 
highest possible resistance of a completely ballistic conductor. 

• All completely ballistic conductors (whether in 1D, 2D, or 3D) will have 
conductance that is in multiples of the quantum conductance value (one can think 
of ballistic conductance in 2D and 3D as a number of 1D conductors in parallel)

The Quantum of Conductance:
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The Question of Energy Dissipation
The relation:

suggests that there should be power 
dissipation in the conductor given by:

Q
Q R

V
VGI 

Q
Q R

V
RIP

2
2 

But, as we have seen, electrons do not loose any energy in the conductor – they do 
not scatter – they go ballistic. So where is the energy being dissipated?
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Answer:

The energy is dissipated in  
the contact not in the 
conductor!

Electrons loose energy and 
thermalize when they reach 
the contact
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Multiple Subbands: Quantized Conductance
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8

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Quantized Conductance: Experiments with 1D Quantum Wires

Semiconductor Quantum Point Contacts:

AlGaAs

GaAs
Quantum well

gate
gate

source

drain
• Electrons are confined in 2D in the quantum well

• Negative bias on metal gates repel electrons from 
underneath the gates creating a narrow 1D channel 
for electrons in the spacing between the gates

• The gate voltage can also control how many 
subbands of the 1D channel are below the Fermi 
level

Phys. Rev. Lett., 60, 848 (1988)

The conductance (and resistance) 
is quantized so effectively in 
Quantum Hall Effect that it can 
give a value of the Plank’s 
constant to one part in 108
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Scattering and Conductance in 1D

What if there is one scatterer (like an impurity atom) in the 1D channel?

L

Quantum Mechanical Reflection and Transmission from a Potential Barrier:

Consider what happens when there is a potential barrier in the path of an electron in 
a 1D quantum wire:
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Left Side Solution: Right Side Solution:

Reflection probability: TrRc  12
Assume they are energy 
independent
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Conductance as Transmission: Landauer’s Formula
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Conductance as Transmission: Higher Dimensions
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