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Handout 25

Semiconductor Heterostructures

In this lecture you will learn:

• Energy band diagrams in real space
• Semiconductor heterostructures and heterojunctions
• Electron affinity and work function
• Heterojunctions in equilibrium
• Electrons at Heterojunctions

Herbert Kroemer 
(1920-)
Nobel Prize 2000 for 
the Semiconductor 
Heterostructure Laser
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Band Diagrams in Real Space - I

For devices, it is useful to draw the conduction and valence band edges in real space:
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Band Diagrams in Real Space - II

Electrostatic potential and electric field:
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An electrostatic potential (and an electric field) can be present in a crystal:

The total energy of an electron in a crystal is then given not just by the energy band 
dispersion             but also includes the potential energy coming from the potential:

Therefore, the conduction and valence band edges also become position dependent:

     rrEr


 and

 kEn



     rekEkE nn




   reEEreEE vvcc


 

Example: Uniform x-directed electric field
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Electron Affinity and Work Function

Electron affinity “” is the energy required to remove an electron from the bottom 
of the conduction band to outside the crystal, i.e. to the vacuum level
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Work function “W ” is the energy required to 
remove an electron from the Fermi level to 
the vacuum level 

• Work function changes with doping but 
affinity is a constant for a given material
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Semiconductor N-N Heterostructure: Electron Affinity Rule

Heterostructure: A semiconductor structure in which more than one semiconductor 
material is used and the structure contains interfaces or junctions between two 
different semiconductors 

Consider the following heterostructure interface between a wide bandgap and a 
narrow bandgap semiconductor (both n-type):
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The electron affinity rule
tells how the energy band 
edges of the two 
semiconductors line up at 
a hetero-interface
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Semiconductor N-N Heterojunction
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Something is wrong here:
the Fermi level (the chemical 
potential) has to be the 
same everywhere in 
equilibrium (i.e. a flat line)

• Once a junction is made, electrons will flow from the side with higher Fermi level 
(1) to the side with lower Fermi level (2)

Electrons
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• Electrons will flow from the 
side with higher Fermi level (1) 
to the side with lower Fermi 
level (2)

• Electron flow away from 
semiconductor (1) will result in a 
region at the interface which is 
depleted of electrons (depletion 
region). Because of positively 
charged donor atoms, the 
depletion region has net 
positive charge density

• Electron flow into 
semiconductor (2) will result in a 
region at the interface which has 
an accumulation of electrons 
(accumulation region). The 
accumulation region has net 
negative charge density
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Note: the vacuum level follows the electrostatic 
potential:
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Semiconductor N-N Heterojunction: Equilibrium

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

1cE

1vE

1fE
2cE

2vE

2fE

2

1

V

1gE
2gE

• Electron flow from 
semiconductor (1) to 
semiconductor (2) continues 
until the electric field due to the 
formation of depletion and 
accumulation regions becomes 
so large that the Fermi levels on 
both sides become the same

• In equilibrium, because of the 
electric field at the interface, 
there is a potential difference 
between the two sides – called 
the built-in voltage 

• The built-in voltage is related 
to the difference in the Fermi 
levels before the equilibrium 
was established:

Depletion 
region Accumulation 

region

1cE

1vE

1fE 2cE

2vE

2fE

21

V

1gE
2gE

beV

21 ffb EEeV 

beV

Semiconductor N-N Heterojunction: Equilibrium
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Once a junction is made:

• Electrons will flow from the side with higher Fermi level (1) to the side with lower 
Fermi level (2)

• Holes will flow from the side with lower Fermi level (2) to the side with higher 
Fermi level (1)

beV

Electrons

Holes

Semiconductor P-N Heterojunction
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beV
• Electron flow away from 
semiconductor (1) will result in a 
region at the interface which is 
depleted of electrons (depletion 
region). Because of positively 
charged donor atoms, the 
depletion region has net 
positive charge density

• Hole flow away from 
semiconductor (2) will result in a 
region at the interface which is 
depleted of holes (depletion 
region). Because of negatively 
charged acceptor atoms, the 
depletion region has net 
negative charge density
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Note: the vacuum level follows the electrostatic 
potential:
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Semiconductor P-N Heterojunction: Equilibrium
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• Electron flow from 
semiconductor (1) to 
semiconductor (2) and hole flow 
from semiconductor (2) to 
semiconductor (1) continues 
until the electric field due to the 
formation of depletion regions 
becomes so large that the Fermi 
levels on both sides become the 
same

• The built-in voltage is related 
to the difference in the Fermi 
levels before the equilibrium 
was established:
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Semiconductor P-N Heterojunction: Equilibrium
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Types of Semiconductor Heterojunctions

Type-I: Straddling gap

Type-II: Staggered gap
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Type-III: Broken gap
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Band Offsets in Heterojunctions
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The conduction and valence band offsets are determined as follows:
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Electrons at Heterojunctions
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Question: What happens to the electron that approaches the interface (as shown)? 
How does it see the band offset? Does it bounce back? Does it go on the under side?

The effective mass equation can be used to answer all the above questions

In semiconductor 1:

In semiconductor 2:
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Electrons at Heterojunctions; Effect of Band Offsets
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Assume for the electron in the conduction band of semiconductor 1:
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And for the electron in semiconductor 2:
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Notice that the 
conduction band edge 
energy (i.e. Ec1 or Ec2) 
appears as a constant 
potential in the effective 
mass Schrodinger 
equation

Conduction band offset 
at the heterojunction 
therefore appears like a 
potential step to the 
electron 

  0rU


ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Electrons at Heterojunctions: Boundary Conditions

(1) Continuity of the wavefunction at the boundary:
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(2) Continuity of the normal component of the probability current at the boundary:

In text book quantum mechanics the probability current is defined as: 
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Or in shorter component notation: 

Probability current is always continuous across a boundary
We need an expression for the probability current in terms of the envelope function
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Electrons at Heterojunctions: Boundary Conditions

Probability Current: In a material with energy band dispersion given by: 
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The expression for the electron probability current (in terms of the envelope function) is: 
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Continuity of the probability current:
The continuity of the normal component of the probability current across a 
heterojunction gives another boundary condition for the envelope function: 
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Electrons at Heterojunctions: Boundary Conditions

(1) Continuity of the envelope function at the boundary:

(2) Continuity of the normal component of the probability current at the boundary:
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If in both the materials the inverse effective mass matrix is diagonal then this 
boundary condition becomes:



10

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

The Effective Mass Theory for Heterojunctions
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In semiconductor (1):
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The Effective Mass Theory for Heterojunctions
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Assume a plane wave solution:    zkykxki zyxer
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We expect a reflected wave also so we write the total solution in semiconductor (1) 
as:

     zkykxkizkykxki zyxzyx erer
  11

1




A plane wave 
solution works

In semiconductor (1):

r t r


1  r


2



11

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

The Effective Mass Theory for Heterojunctions
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Assume a plane wave solution:    zkykxki zyxetr
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A plane wave 
solution works 
here also

In semiconductor (2):

1cE
2cE

cE

x
0

r t r


1  r


2

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Boundary Conditions at Heterojunctions
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(1) Envelope functions must be continuous at the interface:
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Note that this boundary condition can only be satisfied if the components of the 
wavevector parallel to the interface are the same on both sides
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Boundary Conditions at Heterojunctions
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Energy conservation:
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Note that the effective barrier height depends on the band offset as well as 
the parallel components of the wavevector  
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Boundary Conditions at Heterojunctions
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(2) Probability current must be continuous at the interface:
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Conservation of 
probability current at 
the interface
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Transmission and Reflection at Heterojunctions
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We have two equations in two unknowns:

The solution is:
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Where:

Special case: If the RHS in the above equation is negative, then kx2 becomes imaginary 
and the wavefunction decays exponentially for x>0 (in semiconductor 2). In this case:

and the electron is completely reflected from the hetero-interface
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