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Handout 23

Electron Transport Equations

In this lecture you will learn:

• Position dependent non-equilibrium 
distribution functions
• The Liouville equation
• The Boltzmann equation
• Relaxation time approximation
• Transport equations

William Schockley

(1910-1989)
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Note on Notation

In this handout, unless states otherwise, we will assume a conduction band 
with a dispersion given by:
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In the presence of an electric field: 
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Position Dependent Non-Equilibrium Distribution Function

We generalize the concept of non-equilibrium distribution 
functions to situations where electron distributions could 
also be a function of position (as is the case in almost all 
electronic/optoelectronic devices):

The local electron density is obtained upon integration over 
k-space: 
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Local Equilibrium Distribution Function:

Electrons at a given location are likely to reach thermal equilibrium among 
themselves much faster than with electrons in other locations. The local equilibrium 
distribution function is defined by a local Fermi-level in the following way: 
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with the condition that the local Fermi level must be chosen such that:
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Case of No Scattering: Liouville Equation
Question: How does the non-equilibrium distribution function behave in time in 
the absence of scattering?
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In time interval “t ” each electron would have moved in k-space according to the 
dynamical equation:
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Consider an initial non-equilibrium 
distribution 2d dimensions at time “t ”, as 
shown

There is also an applied electric field, as 
shown
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But in the same time interval  “t ” each electron would have moved in real-space 
according to the equation:
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The distribution at time “t+t ” must obey the equation:
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This is because in time “t “ the electron with initial momentum          and position 
would have gone over to the state with momentum                  and position 
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Case of No Scattering: Liouville Equation
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Case of No Scattering: Liouville Equation
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The above equation implies that the underlined term must be zero:

Liouville 
equation

Describes the deterministic evolution of electron distribution in k-space 
and real-space
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Boltzmann Equation: Liouville Equation with Scattering
No Scattering With Scattering

Now we have:

Boltzmann’s 
equation

Deterministic evolution Non-deterministic evolution
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Boltzmann Equation: Relaxation Time Approximation
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Local Equilibrium:

• Scattering is local in space – i.e. electrons at one location do not scatter from 
impurities, defects, phonons, and other electrons that are present at another location 

• Scattering restores local equilibrium – i.e. it drives the distribution function at any 
location to the local equilibrium distribution function at that location
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Boltzmann equation in the 
relaxation time approximation
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Transport Equations: Continuity Equation
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Boltzmann equation can be manipulated to give simpler transport equations

Integrate LHS and RHS over k-space, multiply by two, and use:
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Transport Equations: Current Density Equation
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Assume DC applied electric field and steady state:
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Assumption:

Since the difference between              and               will be of the order of the applied 
field, it is safe replace              by               on the RHS in the above equation:
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Multiply both sides by                        and integrate over k-space to get:   kve
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LHS:
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Transport Equations: Current Density Equation
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,First note that:

            

      rErErkf

kErErE
E

rkf
kvrkf

fcrok

kfcr
o

or


























.,
1

                                  

1
.

,
.,

Therefore the RHS can be written compactly as:
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Transport Equations: Current Density Equation
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For the conduction band of a semiconductor with parabolic dispersion:
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The RHS becomes:
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Finally putting together the LHS and the RHS we get:

Current density equation
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Current Density and the Fermi Level (Chemical Potential)

The expression for the current density is:
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Therefore, currents can flow as a result of both potential gradients and Fermi-level 
(or chemical potential) gradients

Therefore, currents flow ONLY as a result of gradients in the Fermi level (or the 
chemical potential)

Since:
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Transport Equations: Drift and Diffusion

The current density equation:

can be cast in one more form that is more common

We start by relating the gradient in the Fermi level to the 
gradient in the carrier density:
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Transport Equations: Drift and Diffusion
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Where we have the defined the diffusivity tensor as:  
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Current density equation

  12  Mern 


The current density equation shows that current can result from drift when there is 
an electric field (the first term on the RHS) and also by diffusion if there is a carrier 
density gradient (the second term on the RHS)

The expression for the current density becomes:
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Diffusivity, Conductivity, and Mobility - I

Einstein Relation:
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Conductivity and diffusivity are related by the Einstein relation:

Example - Semiconductors:

Consider a semiconductor at high temperatures and assume that Maxwell-Boltzmann 
statistics apply:
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and the Einstein relation can be expressed as:

We define the mobility tensor as:
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Diffusivity, Conductivity, and Mobility - II

Example - Metals:

Consider a metal or a highly doped semiconductor at low temperatures. 
Then:
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and the Einstein relation becomes:


