Handout 20

Quantization of Lattice Waves:
From Lattice Waves to Phonons

In this lecture you will learn:

- Simple harmonic oscillator in quantum mechanics
- Classical and quantum descriptions of lattice wave modes
- Phonons - what are they?

In quantum mechanics, the dynamical variables and observables become operators:

$$
\begin{aligned}
& \boldsymbol{x}(\boldsymbol{t}) \Leftrightarrow \hat{\boldsymbol{x}} \\
& \boldsymbol{p}_{\boldsymbol{x}}(t) \Leftrightarrow \hat{\boldsymbol{p}}_{x} \\
& E_{\text {Total }} \Leftrightarrow \hat{H}=\frac{\hat{p}_{x}^{2}}{2 m}+\frac{1}{2} m \omega_{o}^{2} \hat{\boldsymbol{x}}^{2}
\end{aligned}
$$

Consider a particle of mass \boldsymbol{m} in a parabolic potential

$$
\mathrm{KE}=\frac{\hat{p}_{x}^{2}}{2 m} \quad \mathrm{PE}=V(\hat{x})=\frac{1}{2} m \omega_{0}^{2} \hat{x}^{2}
$$

Hamiltonian operator is:

$$
\hat{H}=\frac{\hat{p}_{x}^{2}}{2 m}+\frac{1}{2} m \omega_{o}^{2} \hat{x}^{2}
$$

The quantum mechanical commutation relations are:

$$
\left[\hat{x}, \hat{p}_{x}\right]=i \hbar
$$

Define two new operators:

$$
\begin{gathered}
\hat{a}=\sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{x}+i \sqrt{\frac{1}{2 m \hbar \omega_{0}}} \hat{p}_{x} \\
\hat{a}^{+}=\sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{x}-i \sqrt{\frac{1}{2 m \hbar \omega_{0}}} \hat{p}_{x}
\end{gathered}
$$

Quantum Simple Harmonic Oscillator Review - II

$\hat{a}=\sqrt{\frac{m \omega_{0}}{2 \hbar}} \hat{x}+i \sqrt{\frac{1}{2 m \hbar \omega_{0}}} \hat{p}_{x} \quad \hat{a}^{+}=\sqrt{\frac{m \omega_{o}}{2 \hbar}} \hat{x}-i \sqrt{\frac{1}{2 m \hbar \omega_{0}}} \hat{p}_{x}$
The quantum mechanical commutation relations are:

$$
\left[\hat{x}, \hat{p}_{x}\right]=i \hbar \quad \Rightarrow \quad\left[\hat{a}, \hat{a}^{+}\right]=1
$$

The Hamiltonian operator can be written as:

$$
\hat{H}=\frac{\hat{p}_{x}^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} \hat{x}^{2}=\hbar \omega_{0}\left(\hat{a}^{+} \hat{a}+\frac{1}{2}\right)
$$

The Hamiltonian operator has eigenstates $|\boldsymbol{n}\rangle$ that satisfy:

$$
\begin{gathered}
\hat{a}^{+} \hat{a}|n\rangle=n|n\rangle \quad\{n=0,1,2,3 \ldots \ldots \ldots \ldots \\
\hat{H}|n\rangle=\hbar \omega_{0}\left(\hat{a}^{+} \hat{a}+\frac{1}{2}\right)|n\rangle=\hbar \omega_{0}\left(n+\frac{1}{2}\right)|n\rangle
\end{gathered}
$$

Lattice Waves in a 1D Crystal: Classical Description

Potential Energy:

$$
\begin{aligned}
V & =V_{E Q}+\frac{1}{2} \sum_{k} \sum_{j} K\left(\vec{R}_{j}, \vec{R}_{k}\right) u\left(\vec{R}_{j}, t\right) u\left(\vec{R}_{k}, t\right) \quad\left\{K\left(\vec{R}_{j}, \vec{R}_{k}\right)=\left.\frac{\partial^{2} V}{\partial u\left(\vec{R}_{j}\right) \partial u\left(\vec{R}_{k}\right)}\right|_{E Q}\right. \\
& =\frac{1}{2} \sum_{k} \sum_{j} K\left(\vec{R}_{j}, \vec{R}_{k}\right) u\left(\vec{R}_{j}, t\right) u\left(\vec{R}_{k}, t\right)
\end{aligned}
$$

Choose the zero of energy so the constant term $V_{E Q}$ goes away

Kinetic Energy:

$$
\mathrm{KE}=\sum_{j} \frac{M}{2}\left(\frac{d u\left(\vec{R}_{j}, t\right)}{d t}\right)^{2}
$$

Lattice Waves in a 1D Crystal: Classical Description

Potential Energy:

$$
V=\frac{1}{2} \sum_{k} \sum_{j} K\left(\vec{R}_{j}, \vec{R}_{k}\right) u\left(\vec{R}_{j}, t\right) u\left(\vec{R}_{k}, t\right)
$$

$$
K\left(\vec{R}_{k}, \vec{R}_{j}\right)=-\alpha \delta_{j, k+1}-\alpha \delta_{j, k-1}+2 \alpha \delta_{j, k} \longrightarrow \begin{aligned}
& \text { Nearest-neighbor } \\
& \text { interaction }
\end{aligned}
$$

$K\left(\vec{R}_{j}, \vec{R}_{k}\right)$ is always a function of only the difference $\vec{R}_{j}-\vec{R}_{k}$

$$
\Rightarrow V=\frac{1}{2} \sum_{k} \sum_{j} K\left(\vec{R}_{j}-\vec{R}_{k}\right) u\left(\vec{R}_{j}, t\right) u\left(\vec{R}_{k}, t\right)
$$

Lattice Waves in a 1D Crystal: Classical Description

The energy for the entire crystal becomes:

$$
\begin{aligned}
E & =\mathrm{KE}+\mathrm{PE} \\
& =\sum_{j} \frac{M}{2}\left(\frac{d u\left(\vec{R}_{j}, t\right)}{d t}\right)^{2}+\frac{1}{2} \sum_{k} \sum_{j} K\left(\vec{R}_{j}-\vec{R}_{k}\right) u\left(\vec{R}_{j}, t\right) u\left(\vec{R}_{k}, t\right)
\end{aligned}
$$

The atomic displacement can be expanded in terms of all the lattice wave modes:

$$
\begin{aligned}
u\left(\vec{R}_{n}, t\right) & =\sum_{\vec{q} \text { in } \mathrm{FBZ}} \operatorname{Re}\left[u(\vec{q}) e^{i \vec{q} \cdot \vec{R}_{n}} e^{-i \omega(\vec{q}) t}\right] \\
& =\sum_{\vec{q} \text { in } \mathrm{FBZ}} \frac{u(\vec{q})}{2} e^{i \vec{q} \cdot \vec{R}_{n}} e^{-i \omega(\vec{q}) t}+\frac{u^{*}(\vec{q})}{2} e^{-i \vec{q} \cdot \vec{R}_{n}} e^{i \omega(\vec{q}) t} \\
& =\sum_{\vec{q} \text { in } \mathrm{FBZ}} \frac{u(\vec{q}, t)}{2} e^{i \vec{q} \cdot \vec{R}_{n}}+\frac{u^{*}(\vec{q}, t)}{2} e^{-i \vec{q} \cdot \vec{R}_{n}} \\
& =\sum_{\vec{q} \text { in }} \sum \frac{u(\vec{q}, t)}{2} e^{i \vec{q} \cdot \vec{R}_{n}}+\frac{u^{*}(-\vec{q}, t)}{2} e^{i \vec{q} \cdot \vec{R}_{n}} \\
& =\sum_{\vec{q} \text { in }} U(\vec{q}, t) e^{i \vec{q} \cdot \vec{R}_{n}} \quad\left\{U(-\vec{q}, t)=U^{*}(\vec{q}, t)\right.
\end{aligned}
$$

Lattice Waves in a 1D Crystal: Classical Description

Take the expansion in terms of the lattice wave modes:

$$
u\left(\bar{R}_{n}, t\right)=\sum_{\vec{q} \text { in }} \sum_{B Z}(\vec{q}, t) e^{i \vec{q} \cdot \vec{R}_{n}} \quad\left\{U(-\vec{q}, t)=U^{*}(\vec{q}, t)\right.
$$

And plug it into the expression for the energy:

$$
E=\sum_{j} \frac{M}{2}\left(\frac{d u\left(\vec{R}_{j}, t\right)}{d t}\right)^{2}+\frac{1}{2} \sum_{k} \sum_{j} K\left(\vec{R}_{j}-\vec{R}_{k}\right) u\left(\vec{R}_{j}, t\right) u\left(\vec{R}_{k}, t\right)
$$

The KE term becomes:

$$
\sum_{j} \frac{M}{2}\left(\frac{d u\left(\vec{R}_{j}, t\right)}{d t}\right)^{2}=\sum_{\vec{q} \text { in } \mathrm{FBZ}} \frac{N M}{2} \frac{d U(\vec{q}, t)}{d t} \frac{d U^{*}(\vec{q}, t)}{d t}
$$

The PE term becomes:

$$
\begin{aligned}
& \frac{1}{2} \sum_{k} \sum_{j} K\left(\vec{R}_{j}-\vec{R}_{k}\right) u\left(\vec{R}_{j}, t\right) u\left(\vec{R}_{k}, t\right)=\sum_{\vec{q} \text { inFBZ }} \frac{N M \omega^{2}(\vec{q})}{2} U(\vec{q}, t) U^{*}(\vec{q}, t) \\
& \text { where: } \omega^{2}(\vec{q})=\frac{1}{M} \sum_{j} K\left(\vec{R}_{j}\right) e^{i \vec{q} \cdot \vec{R}_{j}}=\frac{4 \alpha}{M} \sin ^{2}\left(\frac{\vec{q} \cdot \vec{a}_{1}}{2}\right)
\end{aligned}
$$

From Classical to Quantum Description

So we have finally:

$$
\begin{aligned}
& E=\sum_{j} \frac{M}{2}\left(\frac{d u\left(\vec{R}_{j}, t\right)}{d t}\right)^{2}+\frac{1}{2} \sum_{k} \sum_{j} K\left(\vec{R}_{j}-\vec{R}_{k}\right) u\left(\vec{R}_{j}, t\right) u\left(\vec{R}_{k}, t\right) \\
& =\sum_{\vec{q} \text { in } F B Z}\left[\frac{N M}{2} \frac{d U(\vec{q}, t)}{d t} \frac{d U^{*}(\vec{q}, t)}{d t}+\frac{N M}{2} \omega^{2}(\vec{q}) U(\vec{q}, t) U^{*}(\vec{q}, t)\right]
\end{aligned}
$$

Lattice wave amplitudes uncoupled in the PE term

Going from classical to quantum description:
The atomic displacements and the atomic momenta become operators:

$$
\begin{aligned}
& u\left(\bar{R}_{n}, t\right) \Rightarrow \hat{u}\left(\bar{R}_{n}\right) \\
& M \frac{d u\left(\bar{R}_{n}, t\right)}{d t} \Rightarrow \hat{p}\left(\bar{R}_{n}\right)
\end{aligned}
$$

Commutation relations are:

$$
\left[\hat{u}\left(\bar{R}_{n}\right), \hat{p}\left(\bar{R}_{n}\right)\right]=i \hbar
$$

From Classical to Quantum Description

The amplitudes of lattice waves are now also operators:

Classical:	$u\left(\bar{R}_{n}, t\right)=\sum_{\vec{q} \text { in }} \sum_{B Z} U(\vec{q}, t) e^{i \vec{q} \cdot \bar{R}_{n}}$	$\left\{U(-\vec{q}, t)=U^{*}(\vec{q}, t)\right.$
Quantum:	$\hat{u}\left(\bar{R}_{n}\right)=\sum_{\vec{q} \text { in } \mathrm{FBZ}} \hat{U}(\vec{q}) e^{i \vec{q} \cdot \vec{R}_{n}}$	$\left\{\hat{\boldsymbol{U}}(-\overrightarrow{\boldsymbol{q}})=\hat{\boldsymbol{U}}^{+}(\overrightarrow{\boldsymbol{q}}, \boldsymbol{t})\right.$
Classical:	$p\left(\vec{R}_{n}, t\right)=\sum_{\vec{q} \text { in } \mathrm{FBZ}} P(\vec{q}, t) e^{i \vec{q} \cdot \vec{R}_{n}}$	$\left\{P(-\vec{q}, t)=P^{*}(\vec{q}, t)\right.$
Quantum:	$\hat{p}\left(\vec{R}_{n}\right)=\sum_{\vec{q} \text { in } \mathrm{FBZ}} \hat{P}(\vec{q}) e^{i \vec{q} \cdot \vec{R}_{n}}$	$\left\{\hat{P}(-\vec{q})=\hat{P}^{+}(\vec{q})\right.$

The commutation relations for the lattice wave amplitudes are:

$$
\left[\hat{u}\left(\vec{R}_{j}\right), \hat{p}\left(\bar{R}_{j}\right)\right]=i \hbar \quad \text { can hold only if } \quad\left[\hat{U}(\vec{q}), \hat{P}^{+}\left(\vec{q}^{\prime}\right)\right]=\frac{i \hbar}{N} \delta_{\vec{q}, \vec{q}^{\prime}}
$$

The Hamiltonian operator in terms of the lattice wave amplitude operators is:

$$
\hat{H}=\sum_{\vec{q} \text { in } F B Z}\left[\frac{N}{2 M} \hat{P}(\vec{q}) P^{+}(\vec{q})+\frac{N M}{2} \omega^{2}(\vec{q}) \hat{U}(\vec{q}, t) \hat{U}^{+}(\vec{q}, t)\right]
$$

From Classical to Quantum Description

Define two new operators:

$$
\begin{aligned}
& \hat{a}(\vec{q})=\sqrt{\frac{N M \omega(\vec{q})}{2 \hbar}} \hat{U}(\vec{q})+i \sqrt{\frac{N}{2 M \hbar \omega(\vec{q})}} \hat{P}(\vec{q}) \\
& \hat{a}^{+}(\vec{q})=\sqrt{\frac{N M \omega(\vec{q})}{2 \hbar}} \hat{U}^{+}(\vec{q})-i \sqrt{\frac{N}{2 M \hbar \omega(\vec{q})}} \hat{P}^{+}(\vec{q})
\end{aligned}
$$

The commutation relations are:

$$
\left[\hat{U}(\vec{q}), \hat{P}^{+}\left(\vec{q}^{\prime}\right)\right]=\frac{i \hbar}{N} \delta_{\vec{q}, \vec{q}^{\prime}} \quad \Rightarrow \quad\left[\hat{a}(\vec{q}), \hat{a}^{+}\left(\vec{q}^{\prime}\right)\right]=\delta_{\vec{q}, \vec{q}^{\prime}}
$$

Note the inverse expressions:

$$
\begin{aligned}
& \hat{U}(\vec{q})=\sqrt{\frac{\hbar}{2 N M \omega(\vec{q})}}\left[\hat{a}(\vec{q})+\hat{a}^{+}(-\vec{q})\right] \\
& \hat{P}(\vec{q})=-i \sqrt{\frac{M \hbar \omega(\vec{q})}{2 N}}\left[\hat{a}(\vec{q})-\hat{a}^{+}(-\vec{q})\right]
\end{aligned}
$$

From Classical to Quantum Description

Use the expressions:

$$
\begin{aligned}
& \hat{U}(\vec{q})=\sqrt{\frac{\hbar}{2 N M \omega(\vec{q})}}\left[\hat{a}(\vec{q})+\hat{a}^{+}(-\vec{q})\right] \\
& \hat{P}(\vec{q})=-i \sqrt{\frac{M \hbar \omega(\vec{q})}{2 N}}\left[\hat{a}(\vec{q})-\hat{a}^{+}(-\vec{q})\right]
\end{aligned}
$$

in the Hamiltonian operator:

$$
\hat{H}=\sum_{\vec{q} \text { in } F B Z}\left[\frac{N}{2 M} \hat{P}(\vec{q}) P^{+}(\vec{q})+\frac{N M}{2} \omega^{2}(\vec{q}) \hat{U}(\vec{q}, t) \hat{U}^{+}(\vec{q}, t)\right]
$$

to get:

$$
\hat{H}=\sum_{\vec{q} \text { in } F B Z} \hbar \omega(\vec{q})\left(\hat{a}^{+}(\vec{q}) \hat{a}(\vec{q})+\frac{1}{2}\right)
$$

From Classical to Quantum Description

The final answer:

$$
\hat{H}=\sum_{\vec{q} \text { in } F B Z} \hbar \omega(\vec{q})\left(\hat{a}^{+}(\vec{q}) \hat{a}(\vec{q})+\frac{1}{2}\right)
$$

and the commutation relations

$$
\left[\hat{a}(\vec{q}), \hat{a}^{+}(\vec{q})\right]=1
$$

tell us that:

1) The Hamiltonians of different lattice wave modes are uncoupled
2) The Hamiltonian of each lattice mode resembles that of a simple harmonic oscillator

Finally, the atomic displacements can be expanded in terms of the phonon creation and destruction operators

$$
\begin{aligned}
\hat{u}\left(\vec{R}_{j}\right) & =\sum_{\vec{q} \text { in } \mathrm{FBZ}} \hat{U}(\vec{q}) e^{i \vec{q} \cdot \vec{R}_{j}} \\
& =\sum_{\bar{q} \text { in } \mathrm{FBZ}} \sqrt{\frac{\hbar}{2 N M \omega(\vec{q})}}\left[\hat{a}(\vec{q})+\hat{a}^{+}(-\vec{q})\right] e^{i \vec{q} \cdot \vec{R}_{j}}
\end{aligned}
$$

What are Phonons?

Consider the Hamiltonian of just a single lattice wave mode:

$$
\hat{H}=\hbar \omega(\vec{q})\left(\hat{a}^{+}(\vec{q}) \hat{a}(\vec{q})+\frac{1}{2}\right)
$$

In analogy to the simple harmonic oscillator, its eigenstates, and the corresponding eigenenergies, must be of the form:

$$
\begin{gathered}
\left|n_{\vec{q}}\right\rangle \quad\left\{\text { where } n_{\vec{q}}=0,1,2,3 \ldots \ldots \ldots \ldots\right. \\
\hat{H}\left|n_{\vec{q}}\right\rangle=\hbar \omega(\vec{q})\left(\hat{a}^{+}(\vec{q}) \hat{a}(\vec{q})+\frac{1}{2}\right)\left|n_{\vec{q}}\right\rangle=\hbar \omega(\vec{q})\left(n_{\vec{q}}+\frac{1}{2}\right)\left|n_{\vec{q}}\right\rangle
\end{gathered}
$$

This eigenstate corresponds to $\boldsymbol{n}_{\vec{q}}$ phonons in the lattice wave mode

- A phonon corresponds to the minimum amount by which the energy of a lattice wave mode can be increased or decreased - it is the quantum of lattice wave energy
- A lattice wave mode with $n_{\bar{q}}$ phonons means the total energy of the lattice wave above the ground state energy of $\hbar \omega(\overrightarrow{\boldsymbol{q}}) / \mathbf{2}$ is $\boldsymbol{n}_{\vec{q}} \hbar \omega(\vec{q})$
- The ground state energy is not zero but equals $\hbar \omega(\vec{q}) / 2$ and corresponds to quantum fluctuations of atoms around their equilibrium positions (but no phonons)

What are Phonons?

In general the quantum state of all the lattice wave modes can be written as follows:
where the wavevectors run over all the N lattice wave modes in the FBZ, and the total energy for this quantum state is:

$$
\begin{aligned}
\hat{H}|\psi\rangle & =\sum_{\bar{q} \text { in }} \sum \hbar \omega(\vec{q})\left(\hat{a}^{+}(\vec{q}) \hat{a}(\vec{q})+\frac{1}{2}\right)|\psi\rangle \\
& =\sum_{\vec{q} \text { in }} \sum_{\text {FBZ }} \hbar \omega(\vec{q})\left(n_{\vec{q}}+\frac{1}{2}\right)|\psi\rangle
\end{aligned}
$$

"Phonons are to lattice waves as photons are to electromagnetic waves"

Hamiltonian for Multiple Phonon Bands

If the crystal has multiple phonon bands (TA, LA, TO, etc) then it can be shown that the Hamiltonian can be written as follows:

$$
\hat{H}=\sum_{\eta} \sum_{\vec{q} \text { in } \mathrm{FBZ}} \hbar \omega_{\eta}(\vec{q})\left(\hat{a}_{\eta}^{+}(\vec{q}) \hat{a}_{\eta}(\vec{q})+\frac{1}{2}\right)
$$

where the summation over " η " represents the summation over different phonon bands.

$$
\begin{array}{lll}
\eta=1 & \Rightarrow \text { TA } \\
\eta=2 \Rightarrow & \text { LA } \\
\eta=3 & \Rightarrow \text { TO } \\
\eta=4 \Rightarrow \text { LO }
\end{array}
$$

Phonons bands of a 2D diatomic crystal

