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Handout 20

Quantization of Lattice Waves:
From Lattice Waves to Phonons

In this lecture you will learn:

• Simple harmonic oscillator in quantum mechanics
• Classical and quantum descriptions of lattice wave modes
• Phonons – what are they?
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Classical Simple Harmonic Oscillator
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Consider a particle of mass m in a parabolic potential

In quantum mechanics, the dynamical variables and observables become operators: 

The total energy is:
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Quantum Simple Harmonic Oscillator Review - I
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Consider a particle of mass m in a parabolic potential

The quantum mechanical commutation relations are: 

  ipx x ˆ,ˆ

Define two new operators:
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Hamiltonian operator is:

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Quantum Simple Harmonic Oscillator Review - II
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The quantum mechanical commutation relations are: 

    1ˆ,ˆˆ,ˆ  aaipx x 

The Hamiltonian operator can be written as:
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The Hamiltonian operator has eigenstates that satisfy:n
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Lattice Waves in a 1D Crystal: Classical Description 

A1D lattice of N atoms:
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Choose the zero of energy so the constant term VEQ goes away

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

A1D lattice of N atoms:
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Lattice Waves in a 1D Crystal: Classical Description 
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Lattice Waves in a 1D Crystal: Classical Description 

The energy for the entire crystal becomes:
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The atomic displacement can be expanded in terms of all the lattice wave modes:

Atomic displacements 
coupled in the PE term
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Lattice Waves in a 1D Crystal: Classical Description 
Take the expansion in terms of the lattice wave modes:

And plug it into the expression for the energy:
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The KE term becomes:

The PE term becomes:
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From Classical to Quantum Description 
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Going from classical to quantum description:
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The atomic displacements and the atomic momenta become operators:

Commutation relations are:

     


iRpRu nn ˆ,ˆ

Lattice wave amplitudes 
uncoupled in the PE term
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From Classical to Quantum Description 
The amplitudes of lattice waves are now also operators:

The commutation relations for the lattice wave amplitudes are:
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The Hamiltonian operator in terms of the lattice wave amplitude operators is:
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From Classical to Quantum Description 
Define two new operators:
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The commutation relations are:

Note the inverse expressions:
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From Classical to Quantum Description 

Use the expressions:

in the Hamiltonian operator:

to get:
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From Classical to Quantum Description 
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The final answer:

and the commutation relations 

tell us that:

1) The Hamiltonians of different lattice wave modes are uncoupled
2) The Hamiltonian of each lattice mode resembles that of a simple harmonic 

oscillator
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Finally, the atomic displacements can be expanded in terms of the phonon 
creation and destruction operators
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What are Phonons?
Consider the Hamiltonian of just a single lattice wave mode:
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In analogy to the simple harmonic oscillator, its eigenstates, and the corresponding 
eigenenergies, must be of the form:
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This eigenstate corresponds to         phonons in the lattice wave mode

• A phonon corresponds to the minimum amount by which the energy of a lattice 
wave mode can be increased or decreased – it is the quantum of lattice wave energy

• A lattice wave mode with        phonons means the total energy of the lattice wave 
above the ground state energy of                   is 

• The ground state energy is not zero but equals                   and corresponds to 
quantum fluctuations of atoms around their equilibrium positions (but no phonons)           
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What are Phonons?

In general the quantum state of all the lattice wave modes can be written as follows:

q
q

qqqqq nnnnnn
N






FZB in 
..........................

4321


where the wavevectors run over all the N lattice wave modes in the FBZ, and the 
total energy for this quantum state is:
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“Phonons are to lattice waves as photons are to electromagnetic waves”
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If the crystal has multiple phonon bands (TA, LA, TO, etc) then it can be shown 
that the Hamiltonian can be written as follows:
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where the summation over “” represents the summation over different phonon 
bands. 

Hamiltonian for Multiple Phonon Bands
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Phonons bands of a 2D diatomic crystal


