Handout 19

Lattice Waves (Phonons) in 3D Crystals Group IV and Group III-V Semiconductors LO and TO Phonons in Polar Crystals
and Macroscopic Models of Acoustic Phonons in Solids

In this lecture you will learn:

- Lattice waves (phonons) in 3D crystals
- Phonon bands in group IV and group III-V Semiconductors
- Macroscopic description of acoustic phonons from elasticity theory
- Stress, strain, and Hooke's law

Counting the Number of Phonon bands in 3D Crystals

Periodic boundary conditions for a lattice of $N_{1} \times N_{2} \times N_{3}$ primitive cells imply:

$$
\begin{array}{ll}
\vec{q}=\alpha_{1} \vec{b}_{1}+\alpha_{2} \vec{b}_{2}+\alpha_{3} \vec{b}_{3} \\
\alpha_{1}=m_{1} / N_{1} \quad\left\{\text { where }-N_{1} / 2<m_{1} \leq N_{1} / 2\right. \\
\alpha_{2}=m_{2} / N_{2} \quad\left\{\text { where }-N_{2} / 2<m_{2} \leq N_{2} / 2\right. \\
\alpha_{3}=m_{3} / N_{3} \quad\left\{\text { where }-N_{3} / 2<m_{3} \leq N_{3} / 2\right.
\end{array}
$$

\Rightarrow There are $N_{1} N_{2} N_{3}$ allowed wavevectors in the FBZ
\Rightarrow There are $N_{1} N_{2} N_{3}$ phonon modes per phonon band

Counting degrees of freedom and the number of phonon bands: Monoatomic Basis

- There are $3 N_{1} N_{2} N_{3}$ degrees of freedom corresponding to the motion in 3D of $N_{1} N_{2} N_{3}$ atoms
\Rightarrow The number of phonon bands must be 3 (two TA bands and one LA band)

Counting degrees of freedom and the number of phonon bands: Diatomic Basis

- There are $6 N_{1} N_{2} N_{3}$ degrees of freedom corresponding to the motion in 3D of $2 \mathrm{~N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3}$ atoms
\Rightarrow The number of phonon bands must be 6 (two TA bands and one LA band for acoustic phonons and two TO bands and one LO band for optical phonons)

Phonon Bands in GaAs

GaAs has a FCC lattice with two basis atoms in one primitive cell

FBZ of GaAs
\Rightarrow The number of phonon bands must be 6; two TA bands and one LA band for acoustic phonons and two TO bands and one LO band for optical phonons

Phonon Bands in GaAs

$$
\begin{aligned}
& \hbar \omega_{L O}\left(q_{x} \approx 0\right)=36 \mathrm{meV} \\
& \hbar \omega_{T O}\left(q_{x} \approx 0\right)=33 \mathrm{meV}
\end{aligned}
$$

Optical Phonons in Polar Crystals

Consider a crystal, like GaAs, made up of two different kind of atoms with a polar covalent bond

$$
\vec{u}_{1}\left(\vec{R}+\vec{d}_{1}, t\right) \vec{n}_{j} \vec{u}_{2}\left(\vec{R}+\vec{d}_{1}+\vec{n}_{j}, t\right)
$$

When the atoms move, an oscillating charge dipole is created with a dipole moment given by:

$$
\vec{p}_{j}(\vec{R}, t)=f\left[\vec{u}_{2}\left(\vec{R}+\vec{d}_{1}+\vec{n}_{j}, t\right)-\vec{u}_{1}\left(\vec{R}+\vec{d}_{1}, t\right)\right]
$$

The material polarization, or the dipole moment density, is then:

$$
\vec{P}(\vec{R}, t)=\frac{n}{Z} \sum_{j} \vec{p}_{j}(\vec{R}, t)=\frac{n f}{Z} \sum_{j}\left[\vec{u}_{2}\left(\vec{R}+\vec{d}_{1}+\vec{n}_{j}, t\right)-\vec{u}_{1}\left(\vec{R}+\vec{d}_{1}, t\right)\right]
$$

where:

$$
n=\frac{1}{\Omega_{3}}=\text { Number of primitive cells per unit volume }
$$

$$
Z=\text { Number of nearest neighbors }
$$

A non-zero polarization means an electric field!

Optical Phonons in Polar Crystals: D-Field and E-Field

A non-zero polarization means an electric field! How do we find it?

The divergence of the D-field is zero inside the crystal:

But inside the crystal:

$$
\begin{aligned}
& \vec{D}=\varepsilon(\infty) \vec{E}+\vec{P} \\
& \Rightarrow \nabla \cdot \vec{E}=-\frac{\nabla \cdot \vec{P}}{\varepsilon(\infty)}
\end{aligned}
$$

Since:

$$
\vec{P}(\vec{R}, t)=\frac{n}{Z} \sum_{j} \vec{p}_{j}(\vec{R}, t)=\frac{n f}{Z} \sum_{j}\left[\vec{u}_{2}\left(\vec{R}+\vec{d}_{1}+\vec{n}_{j}, t\right)-\vec{u}_{1}\left(\vec{R}+\vec{d}_{1}, t\right)\right]
$$

Therefore:

$$
\nabla \cdot \vec{E}(\vec{R}, t)=-\frac{\nabla \cdot \vec{P}(\vec{R}, t)}{\varepsilon(\infty)} \longrightarrow \begin{array}{ll}
& \text { We must also have: } \\
& \nabla \times \vec{E}(\vec{R}, t)=0
\end{array}
$$

Optical Phonons in Polar Crystals: Dynamical Equations

Dynamical equations (assuming only nearest neighbor interactions):

$$
\begin{aligned}
& \left.\left.\frac{d^{2} \vec{u}_{1}\left(\vec{R}+\vec{d}_{1}, t\right)}{d t^{2}}=\frac{\alpha}{M_{1}} \sum_{j} \llbracket \vec{u}_{2}\left(\vec{R}+\vec{d}_{1}+\vec{n}_{j}, t\right)-\vec{u}_{1}\left(\vec{R}+\vec{d}_{1}, t\right)\right] \cdot \hat{n}_{j}\right] \hat{n}_{j}-\frac{f}{M_{1}} \vec{E}(\vec{R}, t) \\
& \left.\left.\frac{d^{2} \vec{u}_{2}\left(\vec{R}+\vec{d}_{2}, t\right)}{d t^{2}}=-\frac{\alpha}{M_{2}} \sum_{j} \llbracket \vec{u}_{2}\left(\vec{R}+\vec{d}_{2}, t\right)-\vec{u}_{1}\left(\vec{R}+\vec{d}_{2}-\vec{n}_{j}, t\right)\right] . \hat{n}_{j}\right] \hat{n}_{j}+\frac{f}{M_{2}} \vec{E}(\vec{R}, t)
\end{aligned}
$$

Suppose:

$$
\left[\begin{array}{l}
\vec{u}_{1}\left(\vec{R}+\vec{d}_{1}, t\right) \\
\vec{u}_{2}\left(\vec{R}+\vec{d}_{2}, t\right)
\end{array}\right]=\left[\begin{array}{ll}
\vec{u}_{1}(\vec{q}) e^{i \vec{q} \cdot \vec{d}_{1}} \\
\vec{u}_{2}(\vec{q}) e^{i \vec{q} \cdot \vec{d}_{2}}
\end{array}\right] e^{i \vec{q} \cdot \vec{R}-i \omega t} \quad \begin{aligned}
& \vec{E}(\vec{R}, t)=\vec{E}(\vec{q}) e^{i \vec{a} \cdot \vec{R}-i \omega t} \\
& \vec{P}(\vec{R}, t)=\vec{P}(\vec{q}) e^{i \vec{q} \cdot \vec{R}-i \omega t}
\end{aligned}
$$

We have:

$$
\nabla \times \vec{E}(\vec{R}, t)=0 \Rightarrow \vec{q} \times \vec{E}(\vec{q})=0
$$

We also have:

$$
\nabla \cdot \vec{E}(\vec{R}, t)=-\frac{\nabla \cdot \vec{P}(\vec{R}, t)}{\varepsilon(\infty)} \Rightarrow \hat{q} \cdot \vec{E}(\vec{q})=-\frac{\vec{P}(\vec{q}) \cdot \hat{q}}{\varepsilon(\infty)}
$$

The above two imply that the E-field has non-zero component only in the direction parallel to \vec{q} given by:

$$
\begin{aligned}
& \mathrm{E}(\vec{q})=-\frac{\vec{P}(\vec{q}) \cdot \hat{q}}{\varepsilon(\infty)} \hat{q}
\end{aligned}
$$

Optical Phonons in Polar Crystals: TO Phonons

Subtract the two equations and take the limit $\mathbf{q} \approx 0$ to get:

$$
-\omega^{2}\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right]=-\frac{\alpha}{M_{r}} \sum_{j}\left[\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] . \hat{n}_{j}\right] \hat{n}_{j}+\frac{f}{M_{r}} \vec{E}(\vec{q})
$$

Transverse Optical Phonons:
Take the cross-product of both sides with $\hat{\boldsymbol{q}}$ to get:

$$
\begin{aligned}
& -\omega^{2}\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] \times \hat{q}=-\frac{\alpha}{M_{r}} \sum_{j}\left[\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] . \hat{n}_{j}\right] \hat{n}_{j} \times \hat{q}+\frac{f}{M_{r}} \vec{E}(\vec{q}) \times \hat{q} \\
& -\omega^{2}\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] \times \hat{q}=-\frac{b \alpha}{M_{r}}\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] \times \hat{q} \quad\left\{\begin{array}{l}
\sum_{j} \hat{n}_{j} \hat{n}_{j}=b \\
\sum\left(\vec{A} \hat{n}_{j}\right)\left(\hat{n} \hat{l}_{j} \times \mathbf{q}\right.
\end{array}\right. \\
& \Rightarrow \omega=\sqrt{\frac{b \alpha}{M_{r}}} \quad\left[\begin{array}{c}
\text { For example in GaAs: } \\
{[1]}
\end{array}\right. \\
& \sum_{j}\left(\vec{A} . \hat{n}_{j}\right)\left(\hat{n}_{j} \times \hat{q}\right)=b \vec{A} \times \hat{q} \\
& \Rightarrow \omega_{T O}(q \approx 0)=\sqrt{\frac{b \alpha}{M_{r}}}\left\{\begin{array}{l}
\vec{n}_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \vec{n}_{2}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right] \\
\vec{n}_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right] \quad \vec{n}_{4}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right] \quad=\frac{4}{3}
\end{array}\right.
\end{aligned}
$$

Optical Phonons in Polar Crystals: LO Phonons

Again start from:

$$
-\omega^{2}\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right]=-\frac{\alpha}{M_{r}} \sum_{j}\left[\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] \cdot \hat{n}_{j}\right] \hat{n}_{j}+\frac{f}{M_{r}} \vec{E}(\vec{q})
$$

Longitudinal Optical Phonons:
Take the dot-product of both sides with $\hat{\boldsymbol{q}}$ to get:

$$
\begin{aligned}
& -\omega^{2}\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] \cdot \hat{q}=-\frac{\alpha}{M_{r}} \sum_{j}\left[\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] \cdot \hat{n}_{j}\right] \hat{n}_{j} \cdot \hat{q}+\frac{f}{M_{r}} \vec{E}(\vec{q}) \cdot \hat{q} \\
& -\omega^{2}\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] \cdot \hat{q}=-\frac{b \alpha}{M_{r}}\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] \cdot \hat{q}-\frac{n f^{2}}{M_{r} \varepsilon(\infty)}\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] \cdot \hat{q} \\
\Rightarrow & \omega_{L O}(q \approx 0)=\sqrt{\frac{b \alpha}{M_{r}}+\frac{n f^{2}}{M_{r} \varepsilon(\infty)}} \\
\Rightarrow & \omega_{L O}^{2}(q \approx 0)-\omega_{T O}^{2}(q \approx 0)=\frac{n f^{2}}{M_{r} \varepsilon(\infty)} \\
\Rightarrow & \omega_{L O}^{2}-\omega_{T O}^{2}=\frac{n f^{2}}{M_{r} \varepsilon(\infty)}
\end{aligned}\left\{\begin{array}{c}
\sum_{j} \hat{n}_{j} \hat{n}_{j}=b \\
\sum_{j}\left(\vec{A} \cdot \hat{n}_{j}\right)\left(\hat{n}_{j} \cdot d\right.
\end{array}\right.
$$

Optical Phonons in Polar Crystals: Dielectric Constant

Consider the response of polar optical phonons to an externally applied E-field The total electric field (external plus internal) is:

We have:

$$
\vec{E}(\vec{R}, t)=\vec{E}(\vec{q}) e^{i \vec{q} \cdot \vec{R}-i \omega t} \quad\{\vec{q} \approx 0
$$

$$
\begin{aligned}
& -\omega^{2}\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right]=-\frac{\alpha}{M_{r}} \sum_{j}\left[\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right] . \hat{n}_{j}\right] \hat{n}_{j}+\frac{f}{M_{r}} \vec{E}(\vec{q}) \\
& \Rightarrow\left[\vec{u}_{2}(\vec{q})-\vec{u}_{1}(\vec{q})\right]=-\frac{f}{M_{r}} \overrightarrow{\omega^{2}}(\vec{q}) \\
& \Rightarrow \overrightarrow{\omega_{T O}^{2}} \\
& \Rightarrow \vec{P}(\vec{q})=n f\left[\vec { u } _ { j } \left(\overrightarrow{n_{j}}=b\right.\right. \\
&
\end{aligned}
$$

The D-field is

$$
\begin{aligned}
& \vec{D}(\vec{q})=\varepsilon(\infty) \vec{E}(\vec{q})+\vec{P}(\vec{q})=\varepsilon(\omega) \vec{E}(\vec{q}) \\
& \Rightarrow D(\vec{q})=\left(\varepsilon(\infty)-\frac{n f^{2} / M_{r}}{\omega^{2}-\omega_{T O}^{2}}\right) \vec{E}(\vec{q}) \\
& \Rightarrow \varepsilon(\omega)=\varepsilon(\infty)-\frac{n f^{2} / M_{r}}{\omega^{2}-\omega_{T O}^{2}}
\end{aligned}
$$

Optical Phonons in Polar Crystals: Lydanne-Sachs-Teller Relation

$$
\begin{aligned}
& \text { We have: } \begin{array}{l}
\qquad(\omega)=\varepsilon(\infty)-\frac{n f^{2} / M_{r}}{\omega^{2}-\omega_{T O}^{2}} \\
\Rightarrow \varepsilon(0)=\varepsilon(\infty)+\frac{n f^{2} / M_{r}}{\omega_{T O}^{2}} \longrightarrow \begin{array}{c}
\text { Low frequency } \\
\text { dielectric constant }
\end{array} \\
\Rightarrow \frac{n f^{2}}{M_{r}}=\omega_{T O}^{2}[\varepsilon(0)-\varepsilon(\infty)] \\
\text { The LO-TO phonon frequency splitting was given by: } \\
\Rightarrow \omega_{L O}^{2}-\omega_{T O}^{2}=\frac{n f^{2}}{M_{r} \varepsilon(\infty)}=\omega_{T O}^{2} \frac{[\varepsilon(0)-\varepsilon(\infty)]}{\varepsilon(\infty)} \\
\Rightarrow \omega_{L O}^{2}=
\end{array}
\end{aligned}
$$

The above relationship is called the Lydanne-Sachs-Teller relation
The above relation does not change if more than nearest-neighbor interactions are also included in the analysis
One can also write:

$$
\varepsilon(\omega)=\varepsilon(\infty)-\frac{\omega_{T O}^{2}[\varepsilon(0)-\varepsilon(\infty)]}{\omega^{2}-\omega_{T O}^{2}}
$$

Vector Dynamical Equations: Bond-Stretching and Bond-Bending

Bond-stretching
component

Bond-stretching contribution:

$$
\left.\left.M \frac{d^{2} \vec{u}\left(\vec{R}_{1}, t\right)}{d t^{2}}=\alpha \llbracket \vec{u}\left(\vec{R}_{1}+\vec{m}, t\right)-\vec{u}\left(\vec{R}_{1}, t\right)\right] \cdot \hat{m}\right] \hat{m}
$$

Vector Dynamical Equations: Bond-Stretching and Bond-Bending
Bond-stretching
component

Bond-stretching and bond-bending contributions:

$$
\begin{aligned}
M \frac{d^{2} \vec{u}\left(\vec{R}_{1}, t\right)}{d t^{2}}= & \left.\left.\alpha \llbracket \vec{u}\left(\vec{R}_{1}+\vec{m}, t\right)-\vec{u}\left(\vec{R}_{1}, t\right)\right] \cdot \hat{m}\right] \hat{m} \\
& +\beta\left[\left[\vec{u}\left(\vec{R}_{1}+\vec{m}, t\right)-\vec{u}\left(\vec{R}_{1}, t\right)\right] \cdot \hat{n}_{1}\right] \hat{n}_{1} \\
& +\beta\left[\left[\vec{u}\left(\vec{R}_{1}+\vec{m}, t\right)-\vec{u}\left(\vec{R}_{1}, t\right)\right] \cdot \hat{n}_{2}\right] \hat{n}_{2}
\end{aligned}
$$

Macroscopic Description of Acoustic Phonons in Solids

Acoustic phonons can also be described using a macroscopic formalism based on the theory of elasticity

Let the local displacement of a solid from its equilibrium position be given by the vector

$$
\vec{u}(\vec{r})=\left[\begin{array}{l}
u_{x}(\vec{r}) \\
u_{y}(\vec{r}) \\
u_{z}(\vec{r})
\end{array}\right]
$$

Strain Tensor:

There is a uniform strain given by:

$$
e_{x x}=\frac{\partial u_{x}(x)}{\partial x}=\frac{\Delta L}{L}
$$

Stress and Strain

Strain Tensor:
The strain tensor $\overline{\overline{\boldsymbol{e}}}$ is defined by its $\mathbf{6}$ components:

$$
\begin{aligned}
& e_{x x}=\frac{\partial u_{x}(\vec{r})}{\partial x} \quad e_{y y}=\frac{\partial u_{y}(\vec{r})}{\partial y} \quad e_{z z}=\frac{\partial u_{z}(\vec{r})}{\partial z} \\
& e_{x y}=\frac{\partial u_{x}(\vec{r})}{\partial y}+\frac{\partial u_{y}(\vec{r})}{\partial x} \quad e_{y z}=\frac{\partial u_{y}(\vec{r})}{\partial z}+\frac{\partial u_{z}(\vec{r})}{\partial y} \quad e_{z x}=\frac{\partial u_{z}(\vec{r})}{\partial x}+\frac{\partial u_{x}(\vec{r})}{\partial z}
\end{aligned}
$$

Stress Tensor:
Stress is the force acting per unit area on any plane of the solid It is a tensor with 9 components (as shown)

For example, $\boldsymbol{X}_{\boldsymbol{y}}$ is the force acting per unit area in the x-direction on a plane that has a normal vector pointing in the y-direction

Hooke's Law

Stress Tensor:
In solids with cubic symmetry, if the stress tensor produces no torque (and no angular acceleration) then one must have:

$$
X_{y}=Y_{x} \quad Y_{z}=Z_{y} \quad Z_{x}=X_{z}
$$

So there are only 6 independent stress tensor components:

$$
\begin{array}{llllll}
X_{x} & Y_{y} & Z_{z} & Y_{z} & Z_{x} & X_{y}
\end{array}
$$

Hooke's Law:
A fundamental theorem in the theory of elasticity is Hooke's law that says that strain is proportional to the stress and vice versa. Mathematically, the 6 stress tensor components are related to the $\mathbf{6}$ strain tensor components by a matrix:

$$
\left[\begin{array}{l}
X_{x} \\
Y_{y} \\
Z_{z} \\
Y_{z} \\
Z_{x} \\
X_{y}
\end{array}\right]=\left[\begin{array}{cccccc}
c_{11} & c_{12} & c_{13} & \cdot & \cdot & c_{16} \\
c_{21} & c_{22} & \cdot & \cdot & \cdot & \cdot \\
c_{31} & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
c_{61} & c_{62} & \cdot & \cdot & \cdot & c_{66}
\end{array}\right]\left[\begin{array}{l}
e_{x x} \\
e_{y y} \\
e_{z z} \\
e_{y z} \\
e_{z x} \\
e_{x y}
\end{array}\right]
$$

Elastic stiffness constants

Hooke's Law for Cubic Materials

In solids with cubic symmetry (SC, FCC, BCC) the matrix of elastic constants have only three independent components:

$$
\left[\begin{array}{l}
X_{x} \\
Y_{y} \\
Z_{z} \\
Y_{z} \\
Z_{x} \\
X_{y}
\end{array}\right]=\left[\begin{array}{cccccc}
c_{11} & c_{12} & c_{12} & 0 & 0 & 0 \\
c_{12} & c_{11} & c_{12} & 0 & 0 & 0 \\
c_{12} & c_{12} & c_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{44}
\end{array}\right]\left[\begin{array}{l}
e_{x x} \\
e_{y y} \\
e_{z z} \\
e_{y z} \\
e_{z x} \\
e_{x y}
\end{array}\right]
$$

Elastic energy:
The elastic energy per unit volume of a strained cubic material is:

$$
V=\frac{1}{2} c_{11}\left(e_{x x}^{2}+e_{y y}^{2}+e_{z z}^{2}\right)+c_{12}\left(e_{x x} e_{y y}+e_{y y} e_{z z}+e_{z z} e_{x x}\right)+c_{44}\left(e_{y z}^{2}+e_{z x}^{2}+e_{x y}^{2}\right)
$$

Wave Equation for Acoustic Phonons in Cubic Solids

Consider a solid with density ρ
Consider a small volume of this solid that is in motion, as shown
We want to write Newton's second law for its motion in the x-direction First consider only the force due to the stress tensor component X_{x}
$\rho \Delta x \Delta y \Delta z \frac{\partial^{2} u_{x}(\vec{r}, t)}{\partial t^{2}}=\Delta y \Delta z\left[X_{x}\left(\vec{r}+\frac{\Delta x}{2} \hat{x}\right)-X_{x}\left(\vec{r}-\frac{\Delta x}{2} \hat{x}\right)\right]=\Delta x \Delta y \Delta z \frac{\partial X_{x}(\vec{r})}{\partial x}$
$\Rightarrow \rho \frac{\partial^{2} u_{x}(\vec{r}, t)}{\partial t^{2}}=\frac{\partial X_{x}(\vec{r})}{\partial x}$

Now add the contribution of all forces acting in the x -direction:

$$
\rho \frac{\partial^{2} u_{x}(\vec{r}, t)}{\partial t^{2}}=\frac{\partial X_{x}(\vec{r})}{\partial x}+\frac{\partial X_{y}(\vec{r})}{\partial y}+\frac{\partial X_{z}(\vec{r})}{\partial z}
$$

Wave Equation for Acoustic Phonons in Cubic Solids

We have:

$$
\rho \frac{\partial^{2} u_{x}(\vec{r}, t)}{\partial t^{2}}=\frac{\partial X_{x}(\vec{r})}{\partial x}+\frac{\partial X_{y}(\vec{r})}{\partial y}+\frac{\partial X_{z}(\vec{r})}{\partial z}
$$

Similarly for acceleration in the \mathbf{y} - and \mathbf{z}-directions we get:

$$
\rho \frac{\partial^{2} u_{y}(\vec{r}, t)}{\partial t^{2}}=\frac{\partial Y_{x}(\vec{r})}{\partial x}+\frac{\partial Y_{y}(\vec{r})}{\partial y}+\frac{\partial Y_{z}(\vec{r})}{\partial z}
$$

$$
\rho \frac{\partial^{2} u_{z}(\vec{r}, t)}{\partial t^{2}}=\frac{\partial Z_{x}(\vec{r})}{\partial x}+\frac{\partial Z_{y}(\vec{r})}{\partial y}+\frac{\partial Z_{z}(\vec{r})}{\partial z}
$$

Using the Hooke's law relation, the above equation for motion in the x-direction can be written as:

$$
\begin{aligned}
\rho \frac{\partial^{2} u_{x}(\vec{r}, t)}{\partial t^{2}} & =c_{11} \frac{\partial e_{x x}(\vec{r})}{\partial x}+c_{12}\left[\frac{\partial e_{y y}(\vec{r})}{\partial x}+\frac{\partial e_{z z}(\vec{r})}{\partial x}\right]+c_{44}\left[\frac{\partial e_{x y}(\vec{r})}{\partial y}+\frac{\partial e_{z x}(\vec{r})}{\partial z}\right] \\
& =c_{11} \frac{\partial^{2} u_{x}(\vec{r})}{\partial x^{2}}+c_{44}\left[\frac{\partial^{2} u_{x}(\vec{r})}{\partial y^{2}}+\frac{\partial^{2} u_{x}(\vec{r})}{\partial z^{2}}\right]+\left(c_{12}+c_{44}\right)\left[\frac{\partial^{2} u_{y}(\vec{r})}{\partial x \partial y}+\frac{\partial^{2} u_{z}(\vec{r})}{\partial x \partial z}\right]
\end{aligned}
$$

Wave Equation for Acoustic Phonons in Cubic Solids

$\rho \frac{\partial^{2} u_{x}(\vec{r}, t)}{\partial t^{2}}=c_{11} \frac{\partial^{2} u_{x}(\vec{r})}{\partial x^{2}}+c_{44}\left[\frac{\partial^{2} u_{x}(\vec{r})}{\partial y^{2}}+\frac{\partial^{2} u_{x}(\vec{r})}{\partial z^{2}}\right]+\left(c_{12}+c_{44}\right)\left[\frac{\partial^{2} u_{y}(\vec{r})}{\partial x \partial y}+\frac{\partial^{2} u_{z}(\vec{r})}{\partial x \partial z}\right]$

LA phonons:
Consider a LA phonon wave propagating in the x-direction:

$$
u_{x}(\vec{r}, t)=A e^{i q_{x} x} e^{-i \omega t}
$$

Plug the assumed solution in the wave equation to get:

TA phonons:

$$
\omega=\sqrt{\frac{c_{11}}{\rho}} q_{x} \longrightarrow \text { velocity of wave }=\sqrt{\frac{c_{11}}{\rho}}
$$

Consider a TA phonon wave propagating in the y-direction:

$$
u_{x}(\vec{r}, t)=A e^{i q_{y} y} e^{-i \omega t}
$$

Plug the assumed solution in the wave equation to get:

$$
\omega=\sqrt{\frac{c_{44}}{\rho}} q_{y} \longrightarrow \text { velocity of wave }=\sqrt{\frac{c_{44}}{\rho}}
$$

Acoustic Phonons in Silicon

In Silicon:

$$
\begin{aligned}
& c_{11}=1.66 \times 10^{11} \\
& c_{12}=0.64 \times 10^{11} \\
& \mathrm{~N} / \mathrm{m}^{2} \\
& c_{44}=0.80 \times 10^{11} \\
& \rho=2330
\end{aligned} \quad \mathrm{Ng} / \mathrm{m}^{2} \mathrm{~m}^{3} .
$$

For LA phonons propagating in the $\Gamma-X$ direction:

$$
\text { velocity of wave }=\sqrt{\frac{c_{11}}{\rho}}=8.44 \mathrm{~km} / \mathrm{sec}
$$

For TA phonons propagating in the Γ-X direction:

$$
\text { velocity of wave }=\sqrt{\frac{c_{44}}{\rho}}=5.86 \mathrm{~km} / \mathrm{sec}
$$

Wave Equation for Acoustic Phonons in Cubic Solids

$$
\begin{aligned}
& \rho \frac{\partial^{2} u_{x}(\vec{r}, t)}{\partial t^{2}}=c_{11} \frac{\partial^{2} u_{x}(\vec{r})}{\partial x^{2}}+c_{44}\left[\frac{\partial^{2} u_{x}(\vec{r})}{\partial y^{2}}+\frac{\partial^{2} u_{x}(\vec{r})}{\partial z^{2}}\right]+\left(c_{12}+c_{44}\right)\left[\frac{\partial^{2} u_{y}(\vec{r})}{\partial x \partial y}+\frac{\partial^{2} u_{z}(\vec{r})}{\partial x \partial z}\right] \\
& \rho \frac{\partial^{2} u_{y}(\vec{r}, t)}{\partial t^{2}}=c_{11} \frac{\partial^{2} u_{y}(\vec{r})}{\partial y^{2}}+c_{44}\left[\frac{\partial^{2} u_{y}(\vec{r})}{\partial z^{2}}+\frac{\partial^{2} u_{y}(\vec{r})}{\partial x^{2}}\right]+\left(c_{12}+c_{44}\right)\left[\frac{\partial^{2} u_{x}(\vec{r})}{\partial x \partial y}+\frac{\partial^{2} u_{z}(\vec{r})}{\partial z \partial y}\right]
\end{aligned}
$$

Consider a phonon wave propagating in the direction: $\frac{\hat{x}+\hat{y}}{\sqrt{2}} \Rightarrow \vec{q}=q \frac{\hat{x}+\hat{y}}{\sqrt{2}}$

$$
\left[\begin{array}{l}
u_{x}(\vec{r}, t) \\
u_{y}(\vec{r}, t)
\end{array}\right]=\left[\begin{array}{l}
u_{x}(\vec{q}) \\
u_{y}(\vec{q})
\end{array}\right] e^{i \vec{q} \cdot \vec{r}} e^{-i \omega t}
$$

Plug the assumed solution in the wave equation to get two coupled equations:

$$
\left[\begin{array}{cc}
\frac{q^{2}}{2}\left(c_{11}+c_{44}\right) & \frac{q^{2}}{2}\left(c_{12}+c_{44}\right) \\
\frac{q^{2}}{2}\left(c_{12}+c_{44}\right) & \frac{q^{2}}{2}\left(c_{11}+c_{44}\right)
\end{array}\right]\left[\begin{array}{l}
u_{x}(\vec{q}) \\
u_{y}(\vec{q})
\end{array}\right]=\rho \omega^{2}\left[\begin{array}{l}
u_{x}(\vec{q}) \\
u_{y}(\vec{q})
\end{array}\right]
$$

Wave Equation for Acoustic Phonons in Cubic Solids

$$
\left[\begin{array}{cc}
\frac{q^{2}}{2}\left(c_{11}+c_{44}\right) & \frac{q^{2}}{2}\left(c_{12}+c_{44}\right) \\
\frac{q^{2}}{2}\left(c_{12}+c_{44}\right) & \frac{q^{2}}{2}\left(c_{11}+c_{44}\right)
\end{array}\right]\left[\begin{array}{l}
u_{x}(\vec{q}) \\
u_{y}(\vec{q})
\end{array}\right]=\rho \omega^{2}\left[\begin{array}{l}
u_{x}(\vec{q}) \\
u_{y}(\vec{q})
\end{array}\right]
$$

The two solutions are as follows:
LA phonon:

$$
\omega=\sqrt{\frac{c_{11}+c_{12}+2 c_{44}}{2 \rho}} q \quad\left[\begin{array}{l}
u_{x}(\vec{q}) \\
u_{y}(\vec{q})
\end{array}\right]=A\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

TA phonon:

$$
\omega=\sqrt{\frac{c_{11}-c_{12}}{2 \rho}} q \quad\left[\begin{array}{l}
u_{x}(\vec{q}) \\
u_{y}(\vec{q})
\end{array}\right]=A\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

