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Handout 15

Dynamics of Electrons in Energy Bands

In this lecture you will learn:

• The behavior of electrons in energy bands subjected to uniform 
electric fields
• The dynamical equation for the crystal momentum
• The effective mass tensor and inertia of electrons in energy bands 
• Examples
• Magnetic fields
• Appendix: Electron dynamics using gauge invariance arguments, 
Berry’s phase, and Berry’s curvature
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Electron Dynamics in Energy Bands

1) The quantum states of an electron in a crystal are given by Bloch functions 
that obey the Schrodinger equation:

     rkErH knnkn
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2) Under a lattice translation, Bloch functions obey the relation:

   reRr kn
Rki

kn
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where the wavevector      is confined to the FBZ and “n” is the band indexk


Now we ask the following question: if an external potential is added to the crystal 
Hamiltonian,

then what happens? How do the electrons behave? How do we find the new 
energies and eigenstates?

The external potential could represent, for example, an applied E-field or an 
applied B-field, or an electromagnetic wave (like light)

 trUH ,ˆˆ 
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Recall from homework that the energy bands are lattice-periodic in the reciprocal 
space,

When a function in real space is lattice-periodic, we can expand it in a Fourier 
series,

 When a function is lattice-periodic in reciprocal space, we can also expand it in 
a Fourier series of the form, 

   kEGkE nn
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Periodicity of Energy Bands

Fourier representation of energy bands
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Consider the following mathematical identity (Taylor expansion):
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Generalize to 3 dimensions: 

   rfearf a  
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Now go back to the relation: 

and consider the operator:
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We apply this operator to a Bloch function from the same band (i.e. the n-th 
band) and see what happens:
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A New Operator - I



3

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

       

   

   

   rkE

reRE

RrRE

reREriE

knn

j
kn

Rki
jn

jkn
j

jn

kn
j

R
jnknn

j

j























,

,
.

,

,
.

,

                              

                              

                              

ˆ















 

The result above implies that the action of the operator                   on a Bloch function 
belonging to the same band (i.e. n-th band) is that of the Hamiltonian!
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A New Operator - II

This also implies that if we have a superposition of Bloch functions from a single 
band then:
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The Case of Uniform Electric Field
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Statement of problem: Need to solve,

given that at time t = 0 the state of the electron is a Bloch 
function with wavevector     ,

   rtr kn
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Assumption: Assume that the state at any later time is going 
to be a Bloch function or a linear combination of Bloch 
functions belonging to the same band (valid for weak E-
fields) 

Then one can replace the Hamiltonian with                  , 
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The Case of Uniform Electric Field
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Try the following time-dependent solution with a time-dependent energy:
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First see how the assumed solution behaves under a lattice translation:
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So the assumed solution looks like a Bloch function with a time dependent k-vector:

 



 tEe
ktk 

But we still don’t know what is the time-dependent energy E(t)
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The Case of Uniform Electric Field

LHS (first term):
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RHS:
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Take the trial solution and plug it into the equation:
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Putting it together:

The Case of Uniform Electric Field

The time-dependent energy is consistent with our solution being a Bloch function 
with a time-dependent k-vector,
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So the solution for the initial condition:

is approximately a Bloch function with a time-dependent k-vector:
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The Case of Uniform Electric Field

Final result: In the presence of a uniform electric field the electrons in energy bands 
have a  time-dependent crystal momentum that satisfies the dynamical equation:

 
Ee

dt
tkd 






 The rate of change of the crystal momentum is equal 
to the force on the electron

Note that (perhaps) the more intuitive result that the rate 
of change of the average electron momentum equals the 
applied force DOES NOT hold,
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The dynamical equation is instead given in terms of 
the crystal momentum
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What Happened to Ehrenfest’s Theorem of QM?

In quantum mechanics, Ehrenfest’s theorem is the closest to Newton’s second law. 

Ehrenfest’s theorem: For a time dependent quantum state, the rate of change of the 
average momentum equals the average force:

         trrFtr
dt

trPtrd
,ˆ,

,ˆ, 







We saw that for electrons in solids, in the presence of a uniform applied E-field, 
the following equation does not hold:

        EetrEetr
dt

trPtrd 


 ,,
,ˆ,




The reason is that in solids, in the presence of an applied E-field, the electrons not 
only feel the force from the applied E-field but they also feel the force from the 
periodic atomic potential. If all forces are correctly taken into account then, of 
course, Ehrenfest’s theorem would hold. But it is more useful and simpler to use 
the dynamical equation involving  the crystal momentum:
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Another Look at the Dynamical Equation: Energy Conservation

One can also derive the dynamical equation:

from arguments involving energy conservation 

 
Ee

dt
tkd 






Consider an electron with an initial Bloch state with 
wavevector    . Suppose in the presence of an E-field the 
wavevector is time-dependent - but we don’t know what is 
the time dependence: 

In time t the electron energy will increase by: 

k
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The increase in electron energy also equals the work done 
by the E-field on the electron in  time t:

    tEekvE n 


 .

(1)

(2)

Equating (1) and (2) gives:  
Ee

dt
tkd 
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Effective Mass Tensor and Acceleration
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Consider a solid in which the energy dispersion near a band 
extremum is given by:

The average velocity is:

In the presence of an E-field the crystal momentum changes as:
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Consequently, the rate of change of the velocity satisfies:
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Therefore:
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The acceleration of electrons in energy bands in response to an 
applied force is governed by the effective mass tensor.

The above relation shows that the effective mass tensor, which up 
to this point just represented coefficients for Taylor expansion of 
the energy dispersion relation, is also a measure of the inertia of 
electrons in energy bands just like ordinary mass is a measure of 
the inertia of free electrons.

Written out in component form we have:
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Effective Mass Tensor and Acceleration

In general, the electrons are 
accelerated in a direction 
different from the direction 
of the force due to the 
applied E-field !
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Consider the conduction band of GaAs near the band 
bottom at the -point:
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Example: Conduction and Heavy-Hole Valence Bands of GaAs
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Now consider the heavy-hole valence band of GaAs 
near the band maximum at the -point:























hh

hh

hh

m

m

m

M

100

010

001
1

 
E

m
e

EMe
dt

tvd

hh

hh


  .1

Electrons in the valence band are accelerated in the direction opposite to the 
force acting upon them due to the applied E-field 

Energy

xk

E
x

Conduction 
band

hh valence 
band

ℓh valence 
band
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Example: Conduction Band of Silicon
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In Silicon there are six conduction band minima (valleys) 
that occur along the six -X directions. For the one that 
occurs along the -X(2/a,0,0) direction:
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Not isotropic!

mℓ = 0.92 m
mt = 0.19 m

This implies:
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Electrons in this valley have larger inertia (i.e. larger mass) 
for E-field applied in the x-direction (i.e. the longitudinal 
direction) and smaller inertia (i.e. smaller mass) for E-field 
applied in the y- or z-directions (i.e. the transverse 
directions) 
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We had for only electric fields:

Magnetic fields can also be included as follows:

Generalization to Include Applied Magnetic Fields
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(assuming parabolic 
energy band dispersion)

(assuming parabolic 
energy band dispersion)

Note: If the energy band dispersion is not parabolic (as in graphene) then the 
equations on the right hand side have no meaning
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Appendix: Electron Dynamics from Gauge Invariance
Consider the Schrodinger equation for an electron in a solid:
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We have seen that the stationary solutions are the Bloch states:

       rkErrV
m

P
knnkn





,,

2
ˆ

2

ˆ
 














In the presence of electromagnetic vector and scalar potentials the time-dependent 
Schrodinger equation becomes:
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Appendix: Electron Dynamics from Gauge Invariance
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The Schrodinger equation is invariant (i.e. does not change) under the following 
gauge transformation:      
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Now get back to the problem of an electron in an applied electric field. The Schrodinger 
equation is:
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Perform the following gauge transformation to eliminate the scalar potential in favor 
of the vector potential:

  trEtrf
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Appendix: Electron Dynamics from Gauge Invariance

We get:
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Now we have to solve a time-dependent equation BUT the Hamiltonian is now lattice 
periodic! Assume, in the spirit of Bloch’s analysis, solution of the form:
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And plug the assumed form in the above equation to get:
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Appendix: Electron Dynamics from Gauge Invariance
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If one now defines a time-dependent wavevector as follows:
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Then the above equation is just the familiar equation for the periodic part of a Bloch 
function whose wavevector is time dependent:
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So the answer is:
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And finally the solution of the original problem is (as expected):
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Appendix: Electron Dynamics and Berry’s Phase

Note that the solution:

is not an exact solution of the equation:
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It misses a very important phase factor even if the time dependence is not fast 
enough to cause transitions between states. To capture this we try:

Plugging it in, multiplying both sides by                      , integrating, and using the 
fact that:
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Appendix: Electron Dynamics and Berry’s Phase
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The final complete solution is then:
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Berry’s phase

The extra phase factor is called the Berry’s phase and appears in many places in 
physics (and in optics) 

It is appropriate to write the Berry’s phase as,                                  , since it depends 
on the trajectory of the time-dependent wavevector in reciprocal space

    tkt nkn
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Appendix: Bloch Velocity and Berry’s Phase

The velocity of an electron packet in the presence of an E-field is not the same as in the 
absence of it 

Consider an electron packet:

and assume that the function           peaks when 
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In the absence of Berry’s phase the group velocity of the packet can be found from 
the usual stationary phase argument:
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Appendix: Bloch Velocity and Berry’s Phase
In the presence of Berry’s phase the group velocity of the packet from the stationary 
phase argument gives an extra term:
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The second term in brackets represents the rate of change of the (oriented) area 
of the figure below and equals:
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The packet  group velocity is then:
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Appendix: Berry’s Phase and Berry’s Curvature

So, more  generally, one can write the velocity of Bloch electrons (in the presence of 
a field as):

     knknkn A
dt
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The quantity:

is  called Berry’s curvature and plays an important role in many different places in 
solid state physics (spin Hall effect for example)
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If a solid possesses time reversal symmetry (all materials in the absence of an external 
magnetic field):    kk nn




If a solid possesses inversion symmetry (like Si, Ge):
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It follows that if a solid possesses both time reversal symmetry and inversion 
symmetry (like Si, Ge):
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