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Handout 14

Statistics of Electrons in Energy Bands

In this lecture you will learn:
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Example: Electron Statistics in GaAs - Conduction Band

Consider the conduction band of GaAs near the band 
bottom at the -point:
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This implies the energy dispersion relation near the 
band bottom is:
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Suppose we want to find the total number of electrons in 
the conduction band:

We can write the following summation:
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Where the Fermi-Dirac distribution function is:

We convert the summation into an integral:
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Then we convert the k-space integral into an integral over energy:
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We need to find the density of states function gc(E) for the conduction band and 
need to find the limits of integration

Example: Electron Statistics in GaAs - Conduction Band
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Another way of writing it
Ef
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Density of States in Energy Bands
Energy
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Consider the 1D energy band that results 
from tight binding: 

We need to find the density of states 
function g1D(E):
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Example: Electron Statistics in GaAs - Conduction Band
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Energy dispersion near the band bottom is:

Electrons will only be present near the band bottom

(parabolic and isotropic)

Since the electrons are likely present near the band bottom, we 
can limit the integral over the entire FBZ to an integral in a 
spherical region right close to the -point: 
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Example: Electron Statistics in GaAs - Conduction Band
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Since the Fermi-Dirac distribution will be non-zero only for small 
values of k, one can safely extend the upper limit of the 
integration to infinity:
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We have finally:
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We know that:
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We have finally:

Where the conduction band density of states function is:
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Example: Electron Statistics in GaAs - Conduction Band

The density of states function looks like that of a 3D free electron gas except that 
the mass is the effective mass         and the density of states go to zero at the band 
edge energy 

em
cE
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If                               then one may approximate the Fermi-Dirac 
function as an exponential:
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Maxwell-Boltzman 
approximation

Example: Electron Statistics in GaAs - Conduction Band

Effective density of 
states (units: #/cm3)
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Example: Electron Statistics in GaAs - Valence Band and Holes

Ef

• At zero temperature, the valence band is completely filled and 
the conduction band is completely empty

• At any finite temperature, some electrons near the top of the 
valence band will get thermally excited from the valence band and 
occupy the conduction band and their density will be given by:

• The question we ask here is how many empty states are left in 
the valence band as a result of the electrons being thermally 
excited. The answer is (assuming the heavy-hole valence band):

• We call this the number of “holes” left behind in the valence 
band and the number of these holes is P:
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Example: Electron Statistics in GaAs - Valence Band and Holes

parabolic approx.
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Energy dispersion near the top of the valence band is:

Holes will only be present near the top of the valence band

Since the holes are likely present near the band maximum, we 
can limit the integral over the entire FBZ to an integral in a 
spherical region right close to the -point: 
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Example: Electron Statistics in GaAs - Valence Band and Holes
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Since the Fermi-Dirac distribution will be non-zero only for small 
values of k, one can safely extend the upper limit of the 
integration to infinity:
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We know that:
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We have finally:
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Example: Electron Statistics in GaAs - Valence Band and Holes

Where the heavy hole band density of states function is:
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We have finally:
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Note that the mass that comes in the density of states is the heavy hole effective 
mass            and the density of states go to zero at the band edge energy       , and 
the density of states increase for smaller energies 
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If                               then one may approximate the Fermi-Dirac 
function as an exponential:
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Example: Electron Statistics in GaAs - Valence Band and Holes
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Example: Electron Statistics in GaAs - Valence Band and Holes
In most semiconductors, the light-hole band is degenerate with the heavy hole 
band at the -point. So one always needs to include the holes in the light-hole 
valence band as well:
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Example: Electron Statistics in GaAs – Electrons and Holes

Ef

At any temperature, the total number of electrons and holes 
(including both heavy and light holes) must be equal:
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Because the effective density of states 
for electrons and holes are not the 
same (i.e. Nv ≠ Nc), the Fermi level at 
any finite temperature is not right in the 
middle of the bandgap. 

But at zero temperature, the Fermi-level 
is exactly in the middle of the bandgap
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Example: Electron Statistics in GaAs – Electrons and Holes

Ef

At any temperature, the total number of electrons and holes 
(including both heavy and light holes) must be equal:

where ni is called the intrinsic electron (or hole) density
innp 

Note that the smaller the bandgap the larger than intrinsic electron (or hole) density
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Electron and Hole Pockets in GaAs

Ef

• At any non-zero temperature, electrons 
occupy states in k-space that are located in 
a spherically symmetric distribution around 
the -point

• This distrbution is referred to as the 
“electron pocket” at the -point

• At any non-zero temperature, the holes 
(heavy and light) also occupy states in k-
space that are located in a spherically 
symmetric distribution around the -point

• This distribution is referred to as the “hole 
pocket” at the -point

Hole pocket

Electron pocket
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Shape of Fermi Surface/Contour and Mass Tensor: 2D Example

xk
yk

Energy

xk
yk

Energy

EF EF

kF

 
yy

y

xx

x
cc m

k

m
k

EkE
22

2222 
 

m

k

m
k

EkE yx
cc 22

2222 


xxyy mm 

When the energy dispersion relation is anisotropic, the distribution of carriers in 
k-space, and the Fermi surface/contour, are not spherical/circular but become 
ellipsoidal/elliptical
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Constant Energy Surfaces
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Constant energy surfaces are in the reciprocal space and are such that the energy 
of every point on the surface is the same. 

For example, the conduction band energy dispersion:

All points in k-space that are equidistant from the origin (-point) 
have the same energy. 
 Constant energy surfaces in 3D are spherical shells, and in 2D 
are circles, with the origin as their center.
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Equation of a Constant Energy Surface with Energy Eo:
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Constant Energy Surfaces

Now consider the energy band dispersion:  
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Now the equation of a constant energy surface with energy Eo is:

Equation of an ellipsoid in k-space with semi-major 
axes given by:
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Fermi-Surfaces are Examples of Constant 
Energy Surfaces:
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Silicon: Electrons in the Conduction Band
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In Silicon there are six conduction band minima that occur 
along the six -X directions. These are also referred to as the 
six valleys.  For the one that occurs along the -X(2/a,0,0) 
direction:
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Expression for the electron density in the valley located at along 
the -X(2/a,0,0) direction can be written as:

Ef
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Silicon: Electrons in the Conduction Band

Define:
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Therefore, expression for the electron density in the valley 
located at along the -X(2/a,0,0) direction can be written as:

Ef

Dispersion is isotropic in q-space
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Silicon: Electrons in the Conduction Band
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Total electron density in the conduction band consists of 
contributions from electron density sitting in all the six 
valleys:
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Silicon: Electrons in the Conduction Band
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Six electron pockets in FBZ:

There are six electron pockets 
in Silicon  - one at each of the 
valleys (conduction band 
minima)

The electron distribution in k-
space in each pocket is not 
spherical but ellipsoidal since 
the electron masses in different 
directions are not the same

Ef
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Germanium: Electrons in the Conduction Band

In germanium there are eight conduction band minima 
that occur at the L-points

The L-point is at the edge of the 
FBZ, so one-half of each 
electron pocket is not in the 
FBZ and therefore one-half of 
the electron distribution in each 
L-valley should not be counted 
in the sum for calculating the 
number of electrons: 
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The other way to look at the problem is to realize that the 
other-half of each pocket is also located in the FBZ on the 
opposite side – so in reality there are four complete pockets 
of electrons in the FBZ

FBZ
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