
1

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Handout 12

Energy Bands in Group IV and III-V Semiconductors

In this lecture you will learn:

• The tight binding method (contd…)
• The energy bands in group IV and group III-V semiconductors with 
FCC lattice structure
• Spin-orbit coupling effects in solids
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FCC Lattice: A Review
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Most group VI and group III-V semiconductor, such as Si, Ge, GaAs, InP, etc have 
FCC lattices with a two-atom basis
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Lattices of Group IV  Semiconductors 
(Silicon, Germanium, and Diamond)

• The underlying lattice is an FCC lattice with a two-point (or two-atom) basis. 

• Each atom is covalently bonded to four other atoms (and vice versa) via sp3 
bonds in a tetrahedral configuration

Diamond lattice (Si, Ge, and Diamond)
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Lattices of III-V Binaries (GaAs, InP, InAs, AlAs, InSb, etc) 

• The underlying lattice is an FCC lattice with a two-point (or two-atom) basis. In 
contrast to the diamond lattice, the two atoms in the basis of zincblende lattice are 
different – one belongs to group III and one belongs to group V

• Each Group III atom is covalently bonded to four other group V atoms (and vice 
versa) via sp3 bonds in a tetrahedral configuration

Zincblende lattice (GaAs, InP, InAs)
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• Each Ga atom contributes one 4s-orbital and three 
4p-robitals 

• Each As atom also contributes one 4s-orbital and 
three 4p-robitals 

 Each primitive cell contributes a total of eight 
orbitals that participate in bonding
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One can write the trial tight-binding solution for wavevector     as:k


Example: Tight Binding Solution for GaAs
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Example: Tight Binding Solution for GaAs
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Plug the solution above into the Schrodinger equation to get:
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Tight Binding Solution for GaAs: The Matrix

H
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Tight Binding Solution for GaAs

Parameter values for GaAs:

Tight Binding Solution

eV 890eV 15.2

eV 443eV 70.1

eV 91.7eV  90.4

eV33.17eV 37.11
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Tight Binding Solution for GaAs: States at the -Point

At the -point:

  400 kg


      0321  kgkgkg


 Energy eigenvalues can be found analytically
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The Bloch function of the lowest energy band and of the conduction band at -point 
are made up of ONLY s-orbitals from the Ga and As atoms

Two of the eigenvalues at the -point are:
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Tight Binding Solution for GaAs: States at the -Point

The Bloch function of the highest three energy 
bands and of the three valence bands at -point are 
made up of ONLY p-orbitals from the Ga and As 
atoms

Six remaining eigenvalues at the -point are:

Each eignevalue above is triply degenerate
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• Need  to include the effect of spin-orbit-coupling on the valence bands
Spin orbit coupling lifts the degeneracy of the valence bands
• Need  to include more orbitals (20 per primitive cell as opposed to 8 per primitive cell)
• Use better parameter values 

Simplest TB Approach Improved TB Approach with SO-Coupling
(Figure not on the same scale)

Improved Tight Binding Approaches
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Spin-Orbit Interaction in Solids
An electron moving in an electric field sees an effective magnetic field given by:
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The additional factor 
of 2 is coming from 
Thomas precession

The electron has a magnetic moment       related to its spin angular momentum      by:
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The interaction between the electron spin and the effective magnetic field adds a 
new term to the Hamiltonian:
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Spin-Orbit Interaction in Solids: Simplified Treatment
Near an atom, where electrons spend most of their time, the potential varies mostly 
only in the radial direction away from the atom. Therefore: 
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Recall from quantum mechanics that the total angular momentum      is:Ĵ
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If the electron is in s-orbital then: 0ˆ0ˆˆˆ 222  soHSLJ

If the electron is in p-orbital then: 0ˆ0ˆˆˆ 222  soHSLJ

 The energies of the Bloch states made up of p-orbitals (like in the case of the 
three degenerate valence bands at the  point in GaAs) will be most affected by 
spin-orbit coupling 

Spin-Orbit Interaction in Solids: Simplified Treatment

For an electron in a p-orbital:
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For an electron in a s-orbital:
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Tight Binding Vs Pseudopotential Technique

Simplest TB Approach

A Little More Sophisticated Approach
Nonlocal Pseudopotential Method

GaAs Energy Bands
(Chelikowski and Cohen, 1976)

GaAs
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Energy Bands of Silicon and Germanium

Silicon Energy Bands
(Chelikowski and Cohen, 1976)

Germanium Energy Bands
(Chelikowski and Cohen, 1976)




