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ECE 4070: Physics of Semiconductors and Nanostructures

Instructor: Farhan Rana
Office: PH316
Email: fr37@cornell.edu

Syllabus: The course covers fundamentals of solid state physics relevant to 
semiconductors, electronic and photonic devices, and nanostructures.

Crystal lattices and the reciprocal lattice; 
Electron states and energy bands in molecules and solids; 
Metals, insulators, and semiconductors;  
Graphene, 2D atomic materials, and carbon nanotubes;
Lattice dynamics and phonons in 1D, 2D, and 3D materials; 
Electron statistics and dynamics in energy bands; 
Effective mass theorem; 
Electron transport and Boltzmann equation; 
Optical transitions and optical interband and intraband processes;
Optical loss, optical gain, and Kramers-Kronig relations;
Excitons and polaritons; 
Semiconductor heterostructures; 
Electron states in zero, one, and two dimensional nanostructures; 
Quantum wells, wires, and dots; 
Quantum transport in nanostructures and ballistic transport;
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Course Website and Homeworks

• All course documents, including:

- Lecture notes
- Homeworks and solutions
- Exam solutions
- Extra course related material

will appear on the course website:

http://courses.cit.cornell.edu/ece407/

Homeworks

• Homeworks will be due on Tuesdays at 5:00 PM

• New homeworks and old homework solutions will appear on the course 
website by Tuesday night

• Homework 1 will be due next Tuesday and will be available on the course 
website by tomorrow night
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Course Grading and Textbooks

• Course grading will be done as follows:

- Homeworks (25%)
- 2 Evening Prelims (20% each) – dates TBD
- Final exam (35%) – date TBD

• No in-class quizzes, no pop-quizzes

• Final exam will be comprehensive

Textbooks

• There are no required textbooks. Highly recommended textbooks are:

- Introduction to Solid State Physics, by Charles Kittel (8th

edition)
- Electronic and Optoelectronic Properties of Semiconductor 
Structures, by Jasprit Singh
- Solid State Physics, by Ashcroft and Mermin
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Handout 1

Drude Model for Metals

In this lecture you will learn:

• Metals, insulators, and semiconductors

• Drude model for electrons in metals

• Linear response functions of materials

Paul Drude (1863-1906)
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Inorganic Crystalline Materials

Ionic solids

Mostly insulators 
Example: NaCl, KCl

Covalent solids

Semiconductors
Si, C, GaAs, InP, GaN
PbSe, CdTe, ZnO 

Insulators
SiO2, Si3N4

Metals
Au, Ag, Al, 
Ga, In

Metals

1- Metals are usually very conductive

2- Metals have a large number of “free electrons” that can move in response to an 
applied electric field and contribute to electrical current

3- Metals have a shiny reflective surface
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Properties of Metals: Drude Model

Before ~1900 it was known that most conductive materials obeyed Ohm’s law 
(i.e. I =V/R).

In 1897 J. J. Thompson discovers the electron as the smallest charge carrying 
constituent of matter with a charge equal to “-e” 

C106.1 19e

In 1900 P. Drude formulated a theory for 
conduction in metals using the electron 
concept. The theory assumed:

1) Metals have a large density of “free 
electrons” that can move about freely 
from atom to atom (“sea of electrons”)

2) The electrons move according  to 
Newton’s laws until they scatter from 
ions, defects, etc. 

3) After a scattering event the momentum of 
the electron is completely random (i.e. 
has no relation to its momentum before 
scattering)

+ + + +

+ + + +

+ + + +

ions
sea of 
electrons

+ +

+ +

electron 
path
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Drude Model - I

+ +

+ +

electron 
path

Applied Electric Field:

In the presence of an applied external electric 
field        the electron motion, on average, can 
be described as follows:      

E


Let  be the scattering time and  1/ be the scattering rate

 tp


This means that the probability of scattering in small time interval time dt is: 

The probability of not scattering in time dt is then:

dt







 


dt

1

Let             be the average electron momentum at time t , then we have:

        01 












 


dt

dttEetp
dt

dttp


If no scattering 
happens then 
Newton’s law

If scattering happens then average 
momentum after scattering is zero

     

tp

tEe
dt

tpd
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Drude Model - II
Case I: No Electric Field

   

tp

dt
tpd



 Steady state solution:   0tp


Electron pathCase II: Constant Uniform Electric Field 

Steady state solution is:

  Eetp



E

Electron path

Electron “drift” velocity is defined as:

 
EE

m
e

m
tp

v






 = e/m = electron mobility 
(units: cm2/V-sec)

  EEenvenJ


 

Electron current density (units: Amps/cm2) is:J


Where:

m
ne

ne

n


2

3

 )Siemens/cm :(units tyconductivi  electron

)/cm# :(units  density  electron
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Drude Model - III

     

tp

tEe
dt

tpd




Case III: Time Dependent Sinusoidal Electric Field

There is no steady state solution in this case. Assume the E-field, average 
momentum, and currents are all sinusoidal with phasors given as follows:

    tieEtE  


Re     tieptp  


Re     tieJtJ  


Re
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Electron current density:

          EvenJ
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m
ne








1

0
1

2

Where: Drude’s famous result !!
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Linear Response Functions - I

The relationship:

      EJ



is an example of a relationship between an applied stimulus (the electric field in 
this case) and the resulting system/material response (the current density in this 
case). Other examples include:  

      EP eo




electric polarization 
density

electric fieldelectric 
susceptibility

      HM m




magnetic polarization 
density

magnetic fieldmagnetic 
susceptibility

The response function (conductivity or susceptibility) must satisfy some 
fundamental conditions …. (see next few pages)
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Linear Response Functions - II

        titi etEdtEeE
d

tE  

 









 2

For general time-dependent (not necessarily sinusoidal) e-field one can 
always use Fourier transforms:

Case III: Time Dependent Non-Sinusoidal Electric Field

Then employ the already obtained result in frequency domain:

      EJ



And convert back to time domain:

        titi eE
d

eJ
d

tJ  
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(1)

Now substitute from (1) into the above equation to get:
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Linear Response Functions - III

     ''' tEttdttJ






 Where:      '
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The current at time t is a convolution of the conductivity response function and the 
applied time-dependent E-field 

Drude Model:    
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Linear Response Functions - IV

The linear response functions in time and frequency domain must satisfy the 
following two conditions:

1) Real inputs must yield real outputs:

       '
2

' ' tEe
d

dttJ tti 








 












Since we had:

This condition can only hold if:

    *

2) Output must be causal (i.e. output at any time cannot depend on future input):

Since we had:      ''' tEttdttJ








This condition can only hold if:

  ' for  0' tttt 

Both these conditions are satisfied by the Drude model
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Drude Model and Metal Reflectivity - I

When E&M waves are incident on a air-metal interface there is a reflected wave:

Ei

Hi

Er
Hr

Et

Ht

oo    o

The reflection coefficient is:

 
 






o

o

i

r

E
E

Question: what is            for metals? 

ECE 4070 – Spring 2010 – Farhan Rana – Cornell University

Drude Model and Metal Reflectivity - II

From Maxwell’s equation:

     
t

trE
trJtrH o 




,
,,




Ampere’s law:
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Phasor form:    
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Metal reflection coefficient becomes:

 
 


effo

effo

i
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E
E






Effective dielectric 
constant of metals

Using the Drude expression:    



i



1

0

the frequency dependence of the reflection coefficient of metals can be 
explained adequately all the way from RF frequencies to optical frequencies
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Drude Model and Plasma Frequency of Metals

For metals:    
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For small frequencies                   : 1
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For large frequencies                    (collision-less plasma regime):  1
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where the plasma frequency is:
m

ne

o
p 


2



Note that for                              the dielectric constant is real and negative


 1
p

Electrons behave like a collision-less plasma 

For most good metals 
this frequency is in the 
UV to visible range
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Plasma Oscillations in Metals

+ + + +

+ + + +

+ + + +

+ +

+ +

+ +

+ + + +

+ + + +

+ + + +

+ +

+ +

+ +

u u

Consider a metal with electron density n
Now assume that all the electrons in a certain region got displaced by distance u

E

+ve charge left 
behind

-ve charge 
accumulated

The electric field generated 
o

uen
E




Force on the electrons
o

uen
eEF



2



As a results of this force electron displacement u will obey Newton’s second law:

       tu
dt

tudtuen
eEF

dt

tud
m p

o

2
2

22

2

2






Solution is: Plasma oscillations are charge 
density oscillations

     tBtAtu pp  sincos 

second order 
system
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Plasma Oscillations in Metals – with Scattering

From Drude model, we know that in the presence of scattering we have:

           
dt

tdum
tEe

dt

tud
m

tp
tEe

dt
tpd




2

2

As before, the electric field generated    
o

tuen
tE




Combining (2) with (1) we get the differential equation:

(2)

(1)

     
dt

tdu
tu

dt

tud
p 

 12
2
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1 2

2

2

 tu
dt

tdu

dt

tud
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Or:

second order system with damping 

+ + + +

+ + + +

+ + + +

+ +

+ +
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Plasma Oscillations in Metals – with Scattering

      tBtAetu pp
t   sincos

Where:

22   pp


2
1



Damped plasma 
oscillations

Case I (underdamped case): 


2
1

p

Solution is:

  tt eBeAtu 21   

Where:

2
21

4

1
2
1

p


 

No oscillations

Case II (overdamped case): 


2
1

p

Solution is:

2
21

4

1
2
1
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Appendix: Fourier Transforms in Time OR Space

Fourier transform in time:

    tief
d

tf 

 






2

    tietfdtf  



Inverse Fourier transform:

Fourier transform in space:

    xkiekg
dk

xg 


 2

    xkiexgdxkg 





Inverse Fourier transform:
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Fourier transform in time and space:

    









tixki eetxhdtdxkh  ,,

Inverse Fourier transform:

Appendix: Fourier Transforms in Time AND Space

    









tixki eekh
ddk

txh 




,

22
,
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Appendix: Fourier Transforms in Multiple Space Dimensions

Fourier transform in space:

    zkiykixki
zyx

zyx eeezyxhdzdydxkkkh 












  ,,,,

Inverse Fourier transform:

Need a better notation!

Let:

zzyyxxr

zkykxkk zyx

ˆˆˆ

ˆˆˆ
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