Dynamics of Electrons in Energy Bands from Gauge Invariance
Berry’s Phase and Berry’s Curvature

In this lecture you will learn:

* Electron dynamics using gauge invariance arguments
* Berry’s phase and Berry’s curvature in solid state physics
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Electron Dynamics from Gauge Invariance
Consider the Schrodinger equation for an electron in a solid:

{f:j +V(I:’)} w(F.t)=in %

We have seen that the stationary solutions are the Bloch states:

[Z:,W(?)} Vi @)= EnK, < ()

ik.r

Or since: v, ¢ (F)= eﬁun,E(F
LI V(F) ) = En ) 4 7)

In the presence of electromagnetic vector and scalar potentials the time-dependent
Schrodinger equation becomes:

b

P+eA

2m . +V(r:)—e¢(f-,t) l//(F,t):ih@
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Electron Dynamics from Gauge Invariance
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The Schrodinger equation is invariant (i.e. does not change) under the following
auge transformation: [~ — (A -
9aug AF,t)> A7, t)+ ve(7, )

#(F.1)-> ¢(f,t)_ﬂﬁ’_t)

ot
e,/
) -i%H()
v(F.t)o>e " y(Ft)
Now get back to the problem of an electron in an applied electric field. The Schrodinger
equation is:

{5:1+v(f)+ eE‘ﬁ} y(r,t)=in V00

Perform the following gauge transformation to eliminate the scalar potential in favor
of the vector potential:
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Electron Dynamics from Gauge Invariance

We get:
!ﬁ—eE‘tf | iSER o iSEFt
= +V(F)|e'n v(F)=in e y(F,0)
Let:

iCE.rt

srt)=e" y(r1)

V) g7, 1) = in 200

Now we have to solve a time-dependent equation BUT the Hamiltonian is now lattice
periodic! Assume, in the spirit of Bloch’s analysis, solution of the form:

it
ik 7 ~LiE(t)at
o(F,t)=S—u(F,t)e "0

W

And plug the assumed form in the above equation to get:
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Electron Dynamics from Gauge Invariance

! ﬁ + hk — eEt !2 We are ignoring time
" v(f.) u(F,t) _ E(t)u(?,t) derivatives of u(r,t)

2m
(Adiabaticity assumption)

If one now defines a time-dependent wavevector as follows:
nk(t) = 1k — eEt

Then the above equation is just the familiar equation for the periodic part of a Bloch
function whose wavevector is time dependent:

P +;l§1(t) + V(’z) un,E(t)(F) =E, (E(t)) Un,;;(t)(f’)

So the answer is: »
L olkF . Enk(@E)ar
¢(", t) = W"n,ﬁ(t)(r)e
And finally the solution of the original problem is (as expected):
it .. it
oik(t)F ) —é tj)E,,(k(t'))dt' ) —éjE,,(k(t'))dt'
“ v Unko(e =¥k (Fle
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(F, t) _ e—i%E'.Ft¢(F’ t) _

Electron Dynamics and Berry’s Phase

Note that the solution: = it
= eik.F = —E(I)En(k(t'))dt'
¢(r! t) = Nz un,l}(t)(r)e hk(t) = 1k — eEt

is not an exact solution of the equation:
(B-eeef ‘2‘:’15’ +V(F) 4. 0)=in L”g: 1)

It misses a very important phase factor even if the time dependence is not fast
enough to cause transitions between states (adiabaticity). To capture this we try:

-t -
T e o0
0.0t o
Added phase
Plugging it in, multiplying both sides by u * ) (F), integrating, and using the
fact that: ’

Mi + V(ﬁ ) Uni()(F)=En (R(t)) “ni) ")

2m

e get (PTO):
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Electron Dynamics and Berry’s Phase

8 a9 ) )G i) = 00| & )
= 7nit)= "iod" (Un k) % Up () = ";Eg:) (ung Vg|ung)dd
= 6=f(t) Anq-dd «[ Ag=ilungVglung)
G=k(t=0) g ="\"ng|Yg|“ngq
The final complete solution is then: L
Li%Eqt k(O L En(K(0)di+i7, £ (0)

y(F,t)=e " ¢(F,t)=Tun,,;(t)(F)e 0

it
1 -
—[Ep\k(t'))dt" .
I h(l’ n(K()et e’7n,k(‘)

n.k(t) Berry’s phase
The extra phase factor is called the Berry’s phase and appears in many places in
physics (and in optics)

t is appropriate to write the Berry’s phase as, Vn E(t) =¥n (R(t)), since it depends
the trajectory of the time-dependent wavevector in reciprocal space
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Bloch Velocity and Berry’s Phase

The velocity of an electron packet in the presence of an E-field is not the same as in the
absence of it

Consider an electron packet made up of the time-dependent Bloch functions:

it_ - o
dii . LV (R(t))dt +iya(K(2)
o(F.t)=] dﬂk f(K)e™ oy, ko (F)e ™ (He=lo)

()7 } —é'jt;E,,(E(t'))dt “wipn(K(1))

ddi(: =\ _jk.F
= J’—f(k)e k.o Tun,ﬁ(t) (r)e

(27)°
Assume that the function f(l?) peaks when k= Ro

Lets first look at this packet at time t=0:

di . ikF
d kz f(l'(')e—lk.ro e
2r)

0(r,t=0)=j'(

Where is the packet sitting in space at time t=0?
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Bloch Velocity and Berry’s Phase

Where is the packet sitting in space at time t=07?

L d9% - kg, ok ¥ "
0(r,t—0)—j(2”)2f(k)e u_(F)

One would be inclined to say at 7!

Because if one looks at the gradient of the phase w.r.t. k , evaluates it at Eo , and
sets it equal to zero, one obtains: ¥ =T,

However, this argument would work if the Bloch function did not carry a phase
factor ...... but it does!

This Bloch function phase can be cancelled if the following phase is added to our
packet:

inally, at time =0, the packet is sitting at Fo ! We will work with this packet now.
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Bloch Velocity and Berry’s Phase
Now at time ¢
. it - ~
k()7 _i({ Ep(K(t"))dt +izn k(1))

v Ui (7)e

di L
0(F,t)=j d"k f(k’)e—ik.roel 'n,k

(2)*

We again write it as:

oK(OF iiE,,(l?(t'))dt “+iyn(K(t))

_ d9% ;o\ _ikp ik o\ k) T H
o(F.t)=] (zﬂ)zf(k)e iog! (i hi0) W Uy ey (F)e " 0 P
lﬁ—l
Phase of the Bloch function
has been cancelled
Now: . G=k _ G=k-eEt/n G=k-eEt/n
¢n,E“¢n,E(t)+7"(k(t))= [ Angdq+ ‘IE n,q-d9 - n,q-d9
q=
— e = -
V~|: =@ =+ kt] =——Etx|{V;xA = .
= Vi ¢n,k ¢n,k(t) 7’,,( ()) K=k, h x( ax ""7)|E,‘=ko
Also:
1 t Lo , _ = - - _1 -
Vi |:E[)E,,(k(t ))dt LEO = —vg(Kko)t { Vg (ko) =1 ViEn(K) i
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Bloch Velocity and Berry’s Phase
The wavepacket at time t is:
eik(t).?

(f)s,,(k(t-))dt-”y,,(k(t))
W Unke)

i
(F)e' nk(t)g

di - ik, NPk
o(F.6)=1 (:”;(z f(k)e"k-'oe’(” i)

Now if one takes the gradient of the phase w.rt. k , evaluates it at ifo , and sets it
equal to zero, one obtains:

Pyt 7 (Ro)t+> Etx(VxA —)|6

q=Eo j

The packet group velocity is then:

volko)= 1 ViEn(K), +%Ex(Vq xAng
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Berry’s Phase and Berry’s Curvature

So, more generally, one can write the velocity of Bloch electrons (in the presence of
a field as):

_ ey 1 - —
Valk)= %VEEn( )—Ex (VE "An,k)
The quantity:
Gp(K)=VixA,;
is called Berry’s curvature and plays an important role in many different places in solid

state physics (spin Hall effect for example). It acts like a magnetic field in k-space.

If a solid possesses time reversal symmetry (e.g. all materials in the absence of
magnetic fields):

Qn(‘ k)= ‘Qn(k)
If a solid possesses inversion symmetry (e.g. Si, Ge):

Qn(‘ k)= Qn(k)
It follows that if a solid possesses both time reversal symmetry and inversion
symmetry (e.g. Si, Ge):

Qn(-)= 0
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