Dynamics of Electrons in Energy Bands from Gauge Invariance

Berry’s Phase and Berry’s Curvature

In this lecture you will learn:

• Electron dynamics using gauge invariance arguments
• Berry’s phase and Berry’s curvature in solid state physics

Electron Dynamics from Gauge Invariance

Consider the Schrödinger equation for an electron in a solid:

\[
\left(\frac{\hat{\rho}^2}{2m} + V(\vec{r}) \right) \psi(\vec{r}, t) = i\hbar \frac{\partial \psi(\vec{r}, t)}{\partial t}
\]

We have seen that the stationary solutions are the Bloch states:

\[
\left(\frac{\hat{\rho}^2}{2m} + V(\vec{r}) \right) \psi_{n,k}(\vec{r}) = E_n(\vec{k}) \psi_{n,k}(\vec{r})
\]

Or since:

\[
\psi_{n,k}(\vec{r}) = e^{i\vec{k} \cdot \vec{r}} u_{n,k}(\vec{r})
\]

\[
\Rightarrow \left(\frac{\hat{\rho}^2}{2m} + V(\vec{r}) \right) u_{n,k}(\vec{r}) = E_n(\vec{k}) u_{n,k}(\vec{r})
\]

In the presence of electromagnetic vector and scalar potentials the time-dependent Schrödinger equation becomes:

\[
\left(\frac{\hat{\rho} + e\vec{A}(\vec{r}, t)}{2m} \right) \psi(\vec{r}, t) = \frac{\partial \psi(\vec{r}, t)}{\partial t}
\]
The Schrödinger equation is invariant (i.e., does not change) under the following
gauge transformation:

\[
\psi(\vec{r}, t) \rightarrow e^{\frac{i}{\hbar} A(\vec{r}, t) \cdot \vec{E}} \psi(\vec{r}, t)
\]

Now get back to the problem of an electron in an applied electric field. The Schrödinger
equation is:

\[
\left[\frac{\hat{p}^2}{2m} + V(\vec{r}) + e\vec{E} \cdot \vec{A} \right] \psi(\vec{r}, t) = i\hbar \frac{\partial \psi(\vec{r}, t)}{\partial t}
\]

Perform the following gauge transformation to eliminate the scalar potential in favor
of the vector potential:

\[
f(\vec{r}, t) = -\vec{E} \cdot \vec{r} t
\]
Electron Dynamics from Gauge Invariance

\[
\left(\frac{\hat{\mathbf{p}} + \hbar \mathbf{k} - e\mathbf{E}t}{2m}\right)^2 + V(\mathbf{r})u(\mathbf{r},t) = E(t)u(\mathbf{r},t)
\]

We are ignoring time derivatives of \(u(\mathbf{r},t)\)

(Adiabaticity assumption)

If one now defines a time-dependent wavevector as follows:

\[
\hbar \mathbf{k}(t) = \hbar \mathbf{k} - e\mathbf{E}t
\]

Then the above equation is just the familiar equation for the periodic part of a Bloch function whose wavevector is time dependent:

\[
\left(\frac{\hat{\mathbf{p}} + \hbar \mathbf{k}(t)}{2m}\right)^2 + V(\mathbf{r})u_{n,\mathbf{k}(t)}(\mathbf{r}) = E_n(\mathbf{k}(t))u_{n,\mathbf{k}(t)}(\mathbf{r})
\]

So the answer is:

\[
\phi(\mathbf{r},t) = \frac{e^{i\mathbf{k}(t)\cdot\mathbf{r}}}{\sqrt{V}}u_{n,\mathbf{k}(t)}(\mathbf{r})e^{-\frac{i}{\hbar}\int_0^t E_n(\mathbf{k}(t'))dt'}
\]

And finally the solution of the original problem is (as expected):

\[
\psi(\mathbf{r},t) = e^{-\frac{i\mathbf{E}\cdot\mathbf{r}}{\hbar}}\phi(\mathbf{r},t) = \frac{e^{i\mathbf{k}(t)\cdot\mathbf{r}}}{\sqrt{V}}u_{n,\mathbf{k}(t)}(\mathbf{r})e^{-\frac{i}{\hbar}\int_0^t E_n(\mathbf{k}(t'))dt'} = \psi_{n,\mathbf{k}(t)}(\mathbf{r})e^{-\frac{i}{\hbar}\int_0^t E_n(\mathbf{k}(t'))dt'}
\]

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Electron Dynamics and Berry’s Phase

Note that the solution:

\[
\phi(\mathbf{r},t) = \frac{e^{i\mathbf{k}(t)\cdot\mathbf{r}}}{\sqrt{V}}u_{n,\mathbf{k}(t)}(\mathbf{r})e^{-\frac{i}{\hbar}\int_0^t E_n(\mathbf{k}(t'))dt'}
\]

is not an exact solution of the equation:

\[
\left(\frac{\hat{\mathbf{p}} - e\mathbf{E}t}{2m}\right)^2 + V(\mathbf{r})\phi(\mathbf{r},t) = i\hbar \frac{\partial \phi(\mathbf{r},t)}{\partial t}
\]

It misses a very important phase factor even if the time dependence is not fast enough to cause transitions between states (adiabaticity). To capture this we try:

\[
\phi(\mathbf{r},t) = \frac{e^{i\mathbf{k}(t)\cdot\mathbf{r}}}{\sqrt{V}}u_{n,\mathbf{k}(t)}(\mathbf{r})e^{-\frac{i}{\hbar}\int_0^t E_n(\mathbf{k}(t'))dt'} + \gamma_{n,\mathbf{k}(t)}
\]

Plugging it in, multiplying both sides by \(u^*_{n,\mathbf{k}(t)}(\mathbf{r})\), integrating, and using the fact that:

\[
\left(\frac{\hat{\mathbf{p}} + \hbar \mathbf{k}(t)}{2m}\right)^2 + V(\mathbf{r})u_{n,\mathbf{k}(t)}(\mathbf{r}) = E_n(\mathbf{k}(t))u_{n,\mathbf{k}(t)}(\mathbf{r})
\]

We get (PTO):
Electron Dynamics and Berry’s Phase

\[\frac{\partial \gamma_{n,k}(t)}{\partial t} = i \int d\vec{r} \ u^*_{n,k}(\vec{r}) \left(\frac{\partial}{\partial t} \right) u_{n,k}(\vec{r}) = i \int \langle u_{n,k}(t) | \left(\frac{\partial}{\partial t} \right) | u_{n,k}(t) \rangle \]

\[\Rightarrow \gamma_{n,k}(t) = i \int_{t=0}^{t} dt' \langle u_{n,k}(t') | \left(\frac{\partial}{\partial t} \right) | u_{n,k}(t') \rangle = i \int_{q=k}^{q=k(t=0)} \langle u_{n,q} | \nabla q | u_{n,q} \rangle dq \]

\[= \int_{q=k}^{q=k(t=0)} \bar{A}_{n,q} dq \]

The final complete solution is then:

\[\psi(\vec{r},t) = e^{y} \phi(\vec{r},t) = \frac{e^{i\tilde{k}(t) \cdot \vec{r}}}{\sqrt{V}} u_{n,k}(t) e^{\frac{i}{\hbar} \int_{t_0}^{t} E_n(\tilde{k}(t')) dt'} \]

\[= \psi_{n,k}(\vec{r}(t)) e^{\frac{i}{\hbar} \int_{t_0}^{t} E_n(\tilde{k}(t')) dt'} \]

Berry’s phase

The extra phase factor is called the Berry’s phase and appears in many places in physics (and in optics)

It is appropriate to write the Berry’s phase as, \(\gamma_{n,k}(t) = \gamma_n(\tilde{k}(t)) \), since it depends on the trajectory of the time-dependent wavevector in reciprocal space

Bloch Velocity and Berry’s Phase

The velocity of an electron packet in the presence of an E-field is not the same as in the absence of it

Consider an electron packet made up of the time-dependent Bloch functions:

\[\theta(\vec{r},t) = \int \frac{d^d k}{(2\pi)^d} f(\vec{k}) e^{-i\vec{k} \cdot \vec{r}_0} \psi_{n,k}(\vec{f}) e^{\frac{i}{\hbar} \int_{t_0}^{t} E_n(\tilde{k}(t')) dt'} \]

\[= \int \frac{d^d k}{(2\pi)^d} f(\vec{k}) e^{-i\vec{k} \cdot \vec{r}_0} e^{i\tilde{k}(t) \cdot \vec{r}} u_{n,k}(\vec{r}) e^{\frac{i}{\hbar} \int_{t_0}^{t} E_n(\tilde{k}(t')) dt'} \]

Assume that the function \(f(\vec{k}) \) peaks when \(\tilde{k} = \tilde{k}_0 \)

Lets first look at this packet at time \(t = 0 \):

\[\theta(\vec{r}, t = 0) = \int \frac{d^d k}{(2\pi)^d} f(\vec{k}) e^{-i\vec{k} \cdot \vec{r}_0} e^{i\tilde{k}_0 \cdot \vec{r}} u_{n,k}(\vec{r}) \]

Where is the packet sitting in space at time \(t = 0 \)?
Bloch Velocity and Berry’s Phase

Where is the packet sitting in space at time \(t = 0 \)?

\[
\theta(\vec{r}, t = 0) = \int \frac{d^d \vec{k}}{(2\pi)^d} f(\vec{k}) e^{-i\vec{k} \cdot \vec{r}_0} e^{i\vec{k} \cdot \vec{r}} \frac{1}{\sqrt{V}} u_{n,\vec{k}}(\vec{r})
\]

One would be inclined to say at \(\vec{r}_0 \)!

Because if one looks at the gradient of the phase w.r.t. \(\vec{k} \), evaluates it at \(\vec{k}_0 \), and sets it equal to zero, one obtains: \(\vec{r} = \vec{r}_0 \)

However, this argument would work if the Bloch function did not carry a phase factor ……but it does!

This Bloch function phase can be cancelled if the following phase is added to our packet:

\[
\phi_{n,\vec{k}} = \int \vec{A}_{n,q} \, d\vec{q}
\]

\[
\theta(\vec{r}, t = 0) = \int \frac{d^d \vec{k}}{(2\pi)^d} f(\vec{k}) e^{-i\vec{k} \cdot \vec{r}_0} e^{i\vec{k} \cdot \vec{r}} \frac{1}{\sqrt{V}} u_{n,\vec{k}}(\vec{r}) e^{i\phi_{n,\vec{k}}(\vec{r})}
\]

Finally, at time \(t = 0 \), the packet is sitting at \(\vec{r}_0 \) ! We will work with this packet now.

Bloch Velocity and Berry’s Phase

Now at time \(t \):

\[
\theta(\vec{r}, t) = \int \frac{d^d \vec{k}}{(2\pi)^d} f(\vec{k}) e^{-i\vec{k} \cdot \vec{r}_0} e^{i\vec{k} \cdot \vec{r}(\vec{k}(t))} \frac{1}{\sqrt{V}} u_{n,\vec{k}(t)}(\vec{r}) e^{i\phi_{n,\vec{k}(t)}(\vec{r})} e^{i\int \frac{1}{\hbar} E_n(\vec{k}(t)) dt + i\gamma_n(\vec{k}(t))}
\]

We again write it as:

\[
\theta(\vec{r}, t) = \int \frac{d^d \vec{k}}{(2\pi)^d} f(\vec{k}) e^{-i\vec{k} \cdot \vec{r}_0} e^{i\vec{k} \cdot \vec{r}(\vec{k}(t))} \frac{1}{\sqrt{V}} u_{n,\vec{k}(t)}(\vec{r}) e^{i\phi_{n,\vec{k}(t)}(\vec{r})} e^{i\int \frac{1}{\hbar} E_n(\vec{k}(t)) dt + i\gamma_n(\vec{k}(t))}
\]

Now:

\[
\phi_{n,\vec{k}}(t) = \phi_{n,\vec{k}(t)}(t) + \gamma_n(\vec{k}(t)) = \int \vec{A}_{n,q} \, d\vec{q} + \int q = \vec{k} \vec{A}_{n,q} \, d\vec{q} - \int q = \vec{k} \vec{A}_{n,q} \, d\vec{q}
\]

\[
\Rightarrow \nabla_{\vec{k}} \left[\phi_{n,\vec{k}}(t) - \phi_{n,\vec{k}(t)}(t) + \gamma_n(\vec{k}(t)) \right]_{\vec{k} = \vec{k}_0} = -\frac{\hbar}{E_t} \nabla_{\vec{q}} \times \vec{A}_{n,q} \bigg|_{\vec{q} = \vec{k}_0}
\]

Also:

\[
-\frac{1}{\hbar} \nabla_{\vec{k}} \left[\int \frac{1}{\hbar} E_n(\vec{k}(t)) dt \right]_{\vec{k} = \vec{k}_0} = -\frac{\hbar}{E_t} \left(\gamma_n(\vec{k}_0) + \frac{1}{\hbar} \nabla_{\vec{k}} E_n(\vec{k}(t)) \bigg|_{\vec{k} = \vec{k}_0} \right)
\]
Bloch Velocity and Berry’s Phase

The wavepacket at time t is:

$$\rho(r,t) = \int \frac{d^d k}{(2\pi)^d} f(k) e^{-ik \cdot r} \left(e^{i\phi_{n,k,t}(r)} \right) \frac{\partial^{(t)} E}{\partial V} u_{n,k}(r) e^{i\phi_{n,k}(r)} \frac{d}{dt} - i\frac{d}{dt} E_n(k(t)) dt + i\Omega_n(k(t))$$

Now if one takes the gradient of the phase w.r.t. \hat{k}, evaluates it at \hat{k}_o, and sets it equal to zero, one obtains:

$$\vec{r} = \vec{r}_o + \vec{v}_g(k_o) t + \frac{e}{\hbar} \vec{E} t \times \left(\nabla_q \times \vec{A}_{n,q} \right) \bigg|_{\vec{q} = \hat{k}_o}$$

The packet group velocity is then:

$$\vec{v}_g(k_o) = \frac{1}{\hbar} \nabla_k E_n(k)_{\hat{k}_o} + \frac{e}{\hbar} \vec{E} \times \left(\nabla_q \times \vec{A}_{n,q} \right) \bigg|_{\vec{q} = \hat{k}_o}$$

Berry’s Phase and Berry’s Curvature

So, more generally, one can write the velocity of Bloch electrons (in the presence of a field as):

$$\vec{v}_n(k) = \frac{1}{\hbar} \nabla_k E_n(k) - \frac{d k}{d t} \times \left(\nabla_k \times \vec{A}_{n,k} \right)$$

The quantity:

$$\vec{\Omega}_n(k) = \nabla_k \times \vec{A}_{n,k}$$

is called Berry’s curvature and plays an important role in many different places in solid state physics (spin Hall effect for example). It acts like a magnetic field in k-space.

If a solid possesses time reversal symmetry (e.g. all materials in the absence of magnetic fields):

$$\vec{\Omega}_n(-k) = -\vec{\Omega}_n(k)$$

If a solid possesses inversion symmetry (e.g. Si, Ge):

$$\vec{\Omega}_n(-k) = \vec{\Omega}_n(k)$$

It follows that if a solid possesses both time reversal symmetry and inversion symmetry (e.g. Si, Ge):

$$\vec{\Omega}_n(k) = 0$$