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Department of Electrical and Computer Engineering, Cornell University 
 

ECE 4070: Physics of Semiconductor and Nanostructures 
 

Spring 2014 
 

Homework 6   `   Due on April 08, 2014 at 5:00 PM 
 
 

 
Suggested Readings:  

a) Lecture notes 
b) START EARLY – THIS IS A CHALLENGING HOMEWORK SET 

 
Problem 6.1 (Effective mass tensor and density of states effective mass – the 
general case) 
 
A solid has only one conduction band minimum at the -point with an effective mass tensor given by: 
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The total electron density in the conduction band can be written as (assuming Maxwell Boltzmann 
approximation) 
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And em  is the density of states effective mass for the conduction band. Show that: 
 

   31det Mme  .  
 
Hint: This problem does not require any significant amount of algebra.  
 
 
Problem 6.2 (Constant energy surfaces) 
Consider a material with energy band dispersion given by: 
 
 

a) Show that for an electron with wavevector k


 the velocity in real space given by  kvc


 is always 

perpendicular to the constant energy surface that passes through k


.  
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Problem 6.3 (Band electrons in magnetic fields) 
In homework 1 you looked at the problem of free electrons in a magnetic field. The electrons moved in 
circular orbits in real space with a frequency c  which was called the electron-cyclotron frequency. For 
free electrons,  

m
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In this problem, you will look at electrons in the conduction band of a solid. Suppose the energy band 
dispersion near the conduction band minimum is given by: 
 
 
 
The motion of each electron in k-space is described by the equation: 

  Bkve
dt

kd
c





  

And in real space by the equation: 

 kv
dt

rd
c




  

Needless the say, the motion of the electron is complicated both in k-space and in real space and the 
exploration of this motion is the purpose of this problem.  
 
a) Show that the component of the crystal momentum of an electron parallel to the magnetic field is 

independent of time. We will call this component ||k


.  

 
b) Show that the electron energy is independent of time.   
 
c) Argue from results in (a) and (b) imply that in k-space the orbit of an electron with initial energy oE  is 

given by the intersection of the constant energy surface corresponding to energy oE  with a plane that 

passes through the point ||k


 and is perpendicular to the direction of the magnetic field (or perpendicular 

to ||k


). This shows that the motion of the electron in k-space is periodic.  

 
 
d) In real space, the electron motion is described by the position vector  tr


. The projection of the 

electron motion in a plane perpendicular to the magnetic field is given by  tr


. Argue that, 

 

 
 

Fig: The orbit in k-space of an electron in case where the 
energy band dispersion is anisotropic, the constant 
energy surfaces are ellipsoids, and the magnetic field is 
applied in the z-direction. All electrons with initial 
crystal momentum component in the z-direction given 
by  and energy will have the orbit in k-space as 

shown.  
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e) The orbit of the electron in k-space is given by the time-dependent vector  tk


 and the projection of 

the electron orbit in real-space in a plane perpendicular to the magnetic field is given by  tr


. Show that 
these two orbits are related by, 

        00
2

  tktkB
Be

trtr





 

Hint: start by taking the vector cross-product of an equation on both sides by B


 and then integrating.  
The above relation shows that the projection of the motion of the electron in real space in a plane 
perpendicular to the magnetic field will be periodic since the motion in k-space is periodic (as shown in 
part (c) earlier).  
 
 

For parts (f) and (g) assume that the magnetic field is applied in the ẑ  direction and is given by zBB o ˆ


. The inverse effective mass tensor is given by, 
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From part (e) it follows that the motion of the electrons in the x-y plane (and in k-space) is periodic and 
we suppose the period has a frequency c .  
 
f) Find an expression for c  in terms of the components of the inverse effective mass tensor.  
Hint: The answer can be written in terms of the determinant of a sub-matrix of the inverse effective mass 
matrix. And this is not supposed to be an algebra-intensive problem - if you do it elegantly.   
 
g) The frequency c  can be written as in the free electron case, eoc meB , where em  is now the 
cyclotron effective mass. Find an expression for the cyclotron effective mass. Note that the cyclotron 
effective mass depends on the direction in which the magnetic field has been applied.  
 
NOTE: Measurement of cyclotron frequencies while applying the magnetic field in different 
directions is a commonly used and very effective experimental technique to determine the cyclotron 
effective masses and, from this knowledge, the effective mass tensor of a semiconductor.  
 
 
 For part (h) assume that the inverse effective mass tensor is diagonal and given by, 
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The magnetic field is applied in the direction of the unit vector  zyx nnnn ,,ˆ   and is given by, 

nBB o ˆ


. This last part could be challenging so if you get stuck, move on.  
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h) Show that now the cyclotron effective mass is given by the expression: 
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Hint: You might (or might not) want to use the result that, 
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Problem 6.4 (Effective masses, momentum matrix elements, and the bandgap) 
In lectures the following equation was derived for the periodic part of the Bloch function: 
 
 
 

Suppose the above equation has been solved for a particular point k


in the k-space and all band energies

 kEn


 and corresponding functions  ru kn


,  have been obtained. Now we consider a close by point  

kk


  in k-space. The Hamiltonian is, 
  
 
 

As in the lecture notes, we will treat kH ˆ  as a small perturbation, and expand the new eigenfunction 

 ru kkn


,  in terms of the old eigenfunctions in the following form (just as we do in ordinary 

perturbation theory), 
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As in the lecture notes, the first order correction to the energy is given by, 
  
 
The second order correction to the energy would then be given by the second order perturbation theory, 
  
 
 
 

If one expands the LHS to the second order in k


  one obtains (from Taylor series), 
 
 
 
 

If one collects all terms that are of first order in k


 on the RHS and then equates the corresponding terms 
on the LHS and RHS then one obtains (as in the lecture notes), 
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which is the familiar relationship between the average velocity of the Bloch electron and the energy band 
gradient.  
 

a) Collect all terms that are of second order in k


 on the RHS and then prove the following expression 
for the effective mass,    
  
 
 
 
 
 
 
 
b) Consider a semiconductor with just two bands; a conduction 
band and a valence band with energy dispersions, 
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Show that the effective masses obey the relation: 
 
 
 
 
 
 
NOTE: This problem shows the important relationship between effective masses and momentum 
matrix elements between conduction and valence band Bloch states. It also shows that smaller 
bandgaps imply smaller effective masses and vice versa – something that we briefly mentioned in 
the lecture notes (see the plot in the lecture notes).  
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