Problem 5.1

a) Lesson: The lesson is that if one chooses a value of the wavevector outside the FBZ for numerical solution then one does not obtain any new energy eigenvalues or wavefunctions that are not already in the FBZ. The reason for that, as discussed in the class, is that a solution found for a wavevector in the FBZ already contains superposition of plane waves, different from the starting wavevector value, by reciprocal lattice vectors. If one obtains a solution for a wavevector value, say k, outside the FBZ then it is identical to the solution obtained for a wavevector value, say k^{\prime}, that lies in the FBZ and is related to k via a relation of the form: $k^{\prime}=k+G$, where G is that (unique) reciprocal lattice vector for which k^{\prime} is in the FBZ. This was also the motivation for zone-folding in which free-electron bands outside the FBZ were translated by appropriate reciprocal lattice vectors and placed in the FBZ.

Also notice that if one were to solve for and plot energy bands outside the FBZ, as we did in this problem, then the bands will be periodic in k -space with the periodicity of the reciprocal lattice, in the sense that: $E(\vec{k}+\vec{G})=E(\vec{k})$ where \vec{G} is any reciprocal lattice vector. This property, of course, holds in all dimensions, and even for the tight binding solutions (check!).

Problem 5.2

a) $H_{11}=E_{s}, H_{22}=E_{p}, H_{33}=E_{p}, H_{44}=E_{s}, H_{55}=E_{p}, H_{66}=E_{p}$

$$
H_{14}=V_{s s \sigma}\left(-e^{i \vec{k} \cdot \vec{n}_{1}}-e^{i \vec{k} \cdot \vec{n}_{2}}-e^{i \vec{k} \cdot \vec{n}_{3}}\right) \quad H_{15}=V_{s p \sigma}\left(e^{i \vec{k} \cdot \vec{n}_{1}}-\frac{1}{2} e^{i \vec{k} \cdot \vec{n}_{2}}-\frac{1}{2} e^{i \vec{k} \cdot \vec{n}_{3}}\right)
$$

b)

$$
H_{16}=V_{s p \sigma}\left(\frac{\sqrt{3}}{2} e^{i \vec{k} \cdot \vec{n}_{2}}-\frac{\sqrt{3}}{2} e^{i \vec{k} \cdot \vec{n}_{3}}\right)
$$

c) $H_{24}=V_{s p \sigma}\left(-e^{i \vec{k} \cdot \vec{n}_{1}}+\frac{1}{2} e^{i \vec{k} \cdot \vec{n}_{2}}+\frac{1}{2} e^{i \vec{k} \cdot \vec{n}_{3}}\right)$

$$
H_{34}=V_{s p \sigma}\left(-\frac{\sqrt{3}}{2} e^{i \vec{k} \cdot \vec{n}_{2}}+\frac{\sqrt{3}}{2} e^{i \vec{k} \cdot \vec{n}_{3}}\right)
$$

$$
\begin{aligned}
& H_{25}=V_{p p \sigma}\left(e^{i \vec{k} \cdot \vec{n}_{1}}+\frac{1}{4} e^{i \vec{k} \cdot \vec{n}_{2}}+\frac{1}{4} e^{i \vec{k} \cdot \vec{n}_{3}}\right)+V_{p p \pi}\left(-\frac{3}{4} e^{i \vec{k} \cdot \vec{n}_{2}}-\frac{3}{4} e^{i \vec{k} \cdot \vec{n}_{3}}\right) \\
& H_{36}=V_{p p \pi}\left(-e^{i \vec{k} \cdot \vec{n}_{1}}-\frac{1}{4} e^{i \vec{k} \cdot \vec{n}_{2}}-\frac{1}{4} e^{i \vec{k} \cdot \vec{n}_{3}}\right)+V_{p p \sigma}\left(\frac{3}{4} e^{i \vec{k} \cdot \vec{n}_{2}}+\frac{3}{4} e^{i \vec{k} \cdot \vec{n}_{3}}\right)
\end{aligned}
$$

e) There will be 6 bands; 3 will be completely filled and 3 completely empty at zero temperature

Problem 5.3
a)

I will de a fer of the ware dificett ster. (\hat{H}_{26} and \hat{H}_{27})

$$
H_{26}
$$

This comepruts to the energy matrix element between the Pr orbital af Ga and Px orbited of a veightaning As truth
 $\left|\phi_{A_{x}}(\vec{r})\right\rangle$ and $\left|\phi_{P_{A}}(\vec{\nabla} \vec{d})\right\rangle$. The projection ert each ix orbital aby the $\frac{1}{\sqrt{3}}(1,1)$ divection give e a factor of $\left(\frac{1}{3}\right)^{2}=\frac{1}{3}$ and so the matrix element will be $+\frac{V_{p r o}}{3} e^{i \vec{k} \cdot \overrightarrow{d_{1}}}$. Andine ip coubriention from the other 3 px-rbitels one gets:

$$
\frac{V_{p} p}{3}\left[e^{i \overrightarrow{b_{1}} \cdot \vec{d}_{1}}+e^{i \overrightarrow{b_{k}} \cdot \overrightarrow{d_{2}}}+e^{i \vec{k} \cdot \overrightarrow{d_{2}}}+e^{i \overrightarrow{b_{2}} \cdot \overrightarrow{d_{4}}}\right]
$$

Now we look of the π-ave rep beterech 1 pen $(7)>$ and
 perpendicular to $\frac{1}{\sqrt{3}}(1,1,1)$. This perpendicular directing is \hat{n}_{1}. $\hat{A}_{1}=\frac{\frac{2}{2} \hat{x}-\frac{1}{3} \hat{y}-\frac{1}{3} \hat{z}}{\sqrt{\frac{2}{3}}}$. There can be many dicctions perpenchimber to $\frac{1}{\sqrt{3}}(1,1,1)$ but the one that we are looking for is such that the thee vectors: $\frac{1}{\sqrt{3}}(1,1,1)$ and \hat{n} and \hat{x} all lie in the Save plane. \hat{n}_{1} Gas be found by the neletien: $\hat{n}_{1}=\left\{\hat{x}-\frac{\left(\hat{x} \cdot \vec{d}_{1}\right) \vec{d}}{\left|\vec{d}_{1}\right|^{2}}\right\}_{\text {urdoraliged to unity }}$

One we howe projected both pxerbitach deng the \hat{N}_{1} diction they will be paratheb but we will get:
a facts of $\left(\sqrt{\frac{2}{3}}\right)^{2}=\frac{2}{3}$. the the uretic eleurent beaut

$$
-\frac{2}{3} V_{p p \pi} e^{i \vec{k} \cdot \overrightarrow{d_{1}}}
$$

Admiring up contributions fere the other 3 peobitate gives the total matrix element:

$$
=\frac{2}{3} v_{p i} \pi\left(e^{i \vec{k} \cdot \vec{d}_{1}}+e^{i \overrightarrow{k_{2}} \cdot \overrightarrow{d_{3}}}+e^{i \overrightarrow{k_{2}} \cdot \overrightarrow{d_{3}}}+e^{i \vec{k} \cdot \overrightarrow{d_{4}}}\right)
$$

Finally, coins up contributions from s-verlens and T-aberleps we get the end result:

$$
\begin{aligned}
& \left(\frac{V_{p p}}{3}-\frac{2}{3} V_{p p \pi}\right)\left(e^{i \vec{k} \cdot \overrightarrow{d_{1}}}+e^{i \vec{k} \cdot \overrightarrow{d_{2}}}+e^{i \vec{k} \cdot \overrightarrow{d_{j}}}+e^{i \vec{k} \cdot \vec{d}}\right) \\
& =V_{1} g \cdot(\vec{k})
\end{aligned}
$$

H_{27}
This corresponds ta the energy matrix element between the Px orbital of Ga and the By orbitals of ueirgborius As atreus. Fist take the s-redens between 1 pig (\vec{r}) and \mid pyA $\left.\left(\vec{b} \vec{d}_{1}\right)\right\rangle$, Take the projection op exch along $\frac{1}{\sqrt{3}}(1,1,1)$ to get a factor of $\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{1}{3}$ and the

The watrix elevents with A alains at \vec{d}_{3} and \vec{d}_{4} will guie a uegataie sign. So we get:

$$
\frac{V_{\text {PPo }}}{3}\left(e^{i \overrightarrow{\vec{k}} \cdot \overrightarrow{k_{1}}}+e^{i \overrightarrow{k_{2}} \cdot \overrightarrow{d_{2}}}-e^{i \vec{k} \cdot \overrightarrow{c_{3}}}-e^{i \overrightarrow{k_{2}} \cdot \overrightarrow{k_{4}}}\right) .
$$

Now we look at the T-everlap between $\left|\phi p_{x} G(\vec{\gamma})\right\rangle$ and
 b $\frac{1}{\sqrt{3}}(1,1,1)$. Now we have twe choich:

$$
\begin{aligned}
& \hat{n}_{1}=\frac{\frac{2}{3} \hat{x}-\frac{1}{3} \hat{y}-\frac{1}{3} \hat{z}}{\sqrt{\frac{2}{3}}} \text { or } \hat{n}_{2}=\frac{-\frac{1}{3} \hat{x}+\frac{2}{3} \hat{y}-\frac{1}{3} \hat{z}}{\sqrt{\frac{2}{3}}} \\
& \hat{n_{1}}=\left\{\hat{x}-\frac{\left(\overrightarrow{d_{1}} \cdot \hat{x}\right) \vec{d}}{\left|\vec{a}_{1}\right|^{2}}\right\}_{\text {notmeiged }} \\
& \hat{n}_{2}=\left\{\hat{y}-\frac{\left(\overrightarrow{d_{1}} \cdot \hat{y}\right)^{--} d_{1}}{\left|d_{1}\right|^{2}}\right\}_{\text {risimatizat }}
\end{aligned}
$$

Either choice wis werk choriug \hat{D}_{1} gives a facter $o p\left(\sqrt{\frac{2}{3}}\right)\left(-\frac{1}{\sqrt{2 B}}\right)=-\frac{1}{3}$.
So the watrix element becmes: $+\frac{V_{p p \pi}}{3} e^{i \vec{k} \cdot d_{1}}$
The matrix demente with A_{s} artons at \vec{d}_{3} and $\overrightarrow{d_{4}}$ wis guve opprite sigms, so we get:

$$
\frac{V_{p} \pi}{3}\left(e^{i \vec{k} \cdot \overrightarrow{d_{1}}}+e^{i \vec{k} \cdot \vec{d} \overrightarrow{2}}-e^{i \vec{k} \cdot \overrightarrow{\vec{b}_{2}}}-e^{i \vec{k} \cdot \vec{d}}\right)
$$

Finclly, the total watrix element becomes:

$$
\left(\frac{V_{p p}}{3}+\frac{1}{3} V_{p p} \vec{x}\right)\left(e^{i \vec{k} \cdot \overrightarrow{d_{1}}}+e^{i \overrightarrow{k_{3}} \cdot \overrightarrow{d_{2}}}-e^{i \overrightarrow{b_{0}} \cdot \overrightarrow{d_{3}}}-e^{i \vec{k} \cdot \overrightarrow{d_{u}}}\right)=V_{2} g_{3}(\vec{k})
$$

b)

