EVE 407 Homework +2 Solutions (Falhan Rave).
2.1

$$
2 x \int \frac{d^{3} \vec{x}}{(2 \pi)^{3}} \longrightarrow \sqrt{\frac{m_{x} m_{y} m_{2}}{m^{3}}} 2 x \int \frac{d^{3} \vec{q}}{(2 \pi)^{3}}
$$

Now suite $E(\vec{j})=\frac{k^{2} q^{2}}{2 m}=\frac{\hbar^{2}}{2 m}\left(q_{x}^{2}+q_{y}^{2}+q_{2}^{2}\right)$

$$
\begin{aligned}
& \begin{aligned}
\Rightarrow g(E)=\frac{1}{2 \pi^{2}}\left(\frac{2 m_{d}}{k^{2}}\right)^{3 / 2} \sqrt{E} \quad \text { where un } & =\left(m_{x} m_{y} m_{z}\right)^{1 / 3} \\
& =\text { is called the }
\end{aligned} \\
& =\text { is called the } \\
& \text { density of strabo } \\
& \text { effective unman. }
\end{aligned}
$$

2.2

$$
2 x \int \frac{d^{2} b^{2}}{(2)^{2}} \longrightarrow \sqrt{\frac{w_{x} w^{2} y}{n}} 2 x \int \frac{d^{2} g^{2}}{(2)^{2}} \quad \text { ane } \quad s\left(\frac{3}{p}\right)=\frac{k^{2} q^{2}}{2 m}
$$

$$
\begin{aligned}
& \Rightarrow \sqrt{\frac{u x+u y}{w^{2}}} 2 \times \int \frac{d^{2} \vec{g}}{(2 \pi)^{2}} \longrightarrow \sqrt{\frac{u_{x}+y}{m 2}} \int_{0}^{E} \frac{m}{\pi h^{2}} d E \\
& \Rightarrow g_{2 B}(E)=\frac{m_{d}}{\pi \hbar^{2}} \quad \text { where und }=\sqrt{m_{x} m_{y}} \\
& =\text { demity of stedef } \\
& \text { effectwe wan. }
\end{aligned}
$$

2.3
a) $\vec{a}_{1}=a\left(\frac{\sqrt{3}}{2} \hat{x}+\frac{1}{2} \hat{y}\right)$
b) $\Omega_{2}=\left|\vec{a}_{1} \times \vec{a}_{2}\right|=\frac{\sqrt{3}}{2} a^{2}$
$\overrightarrow{a_{2}}=\left(\frac{\sqrt{3}}{2} \hat{x}-\frac{1}{2} \hat{y}\right)$.
c) See attached figure.
d)

$$
\begin{aligned}
& \overrightarrow{b_{1}}=2 \pi \frac{\vec{a}_{2} \times \hat{2}}{\Omega_{2}}=\frac{4 \pi}{\sqrt{3 a}}\left(-\frac{1 \hat{x}}{2}-\frac{\sqrt{3}}{2} \hat{y}\right) \\
& \overrightarrow{b_{2}}=2 \pi \frac{\hat{2} \times \vec{a}_{1}}{\Omega_{2}}=\frac{4 \pi}{\sqrt{3} a}\left(-\frac{1}{2} \hat{x}+\frac{\sqrt{3}}{2} \hat{y}\right) .
\end{aligned}
$$

e) $\Pi_{2}=\left|\overrightarrow{b_{1}} \times \vec{b}_{2}\right|=\frac{(2 \pi)^{2}}{\Omega_{2}}=\frac{4 \pi^{2}}{\frac{\sqrt{3}}{2} a^{2}}=\frac{8 \pi^{2}}{\sqrt{3} a^{2}}$
f) See attached plot. Lattice is hexagonal. g+h+i) See attached plots 2.4
a) For Fee lattice: $\quad \overrightarrow{a_{1}}=\frac{a}{2}(\hat{y}+\hat{2}) \quad \vec{a}_{2}=\frac{a}{2}(\hat{x}+\hat{z}) \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})$.

$$
\begin{aligned}
& \Omega_{3}=\left|\overrightarrow{a_{1}} \cdot\left(\overrightarrow{a_{2}} \times \overrightarrow{a_{3}}\right)\right|=\frac{a^{3}}{4} \\
& \overrightarrow{b_{1}}=\frac{2 \pi}{\Omega_{3}}\left(\overrightarrow{a_{2}} \times \overrightarrow{a_{3}}\right)=\frac{2 \pi}{a}(\hat{a}+\hat{y}-\hat{x}) \quad \vec{b}_{2}=\frac{2 \pi}{\Omega_{3}}\left(\overrightarrow{a_{3}} \times \overrightarrow{a_{1}}\right)=\frac{2 \pi}{a}(\hat{x}-\hat{y}+\hat{2})
\end{aligned}
$$

$\overrightarrow{b_{3}}=\frac{2 \pi}{a}(\hat{x}+\hat{y}-\hat{z}) \Rightarrow \vec{b}_{1}, \vec{b}_{2}$ and \vec{b}_{3} Correspond to a BCC lattice with a unit call dimension of $\frac{4 \pi}{9}$.
b) Far ce lated: $\quad \overrightarrow{a_{1}}=\frac{a}{2}(-\hat{x}+\hat{y}+\hat{z}) \quad \overrightarrow{a_{2}}=\frac{a}{2}(\hat{x}-\hat{y}+\hat{b})$

$$
\vec{a}_{3}=\frac{2}{2}(\hat{x}+\hat{y}-\hat{z}) .
$$

Problem 2.3 plots

Direct Lattice:

Reciprocal Lattice:

Bragg Planes and Higher BKs

g)

h) The electron wavevector is at the point indicated as (1) above. (1) lies on a Brag plane. This is one of the many equivalent M points in the FBZ. Bragg scattering will take it to the point marked (2) above. (2) is also an M point in the FBZ.
i) The electron wavevector is at the point indicated as (3) above. This is one of the many equivalent K^{\prime} points in the FBZ and lies at the intersection of two Bragg planes. Bragg scattering can take it to the points marked (4) or (5) above. (4) and (5) are also K' points in the FBZ.
(2.4(b)...contd)

$$
\begin{aligned}
& 2.4(\vec{b}) \ldots \text { contd }) \\
& \Omega=\left|\overrightarrow{a_{1}} \cdot\left(\overrightarrow{a_{2}} \times \overrightarrow{a_{2}}\right)\right|=\frac{q^{3}}{2} \\
& \overrightarrow{b_{9}}=\frac{2 \pi}{a}(\hat{y}+\hat{z}) \quad \overrightarrow{b_{2}}=\frac{2 \pi}{a}(\hat{x}+\hat{z}) \quad \overrightarrow{b_{3}}=\frac{2 x}{a}(\hat{x}+\hat{y}) .
\end{aligned}
$$

$\Rightarrow \overrightarrow{b_{1}}, \overrightarrow{b_{2}}$ and $\overrightarrow{b_{3}}$ correspond to a Pe lattice with unit cell size equal to $\frac{4 \pi}{a}$.

2.4(c)

There are 8 Si atoms in a unit cell of volume axaxa . Each Si atom has a mass of 28 amu . One amu is approximately the mass of a proton (or a neutron). So the density is $2335 \mathrm{Kg} /$ cubic-meter.
2.5
a) $\overrightarrow{a_{1}}=\sqrt{3} a \hat{x} \quad \hat{a}_{2}=a \hat{y}$
b) $\Omega_{2}=\left|\overrightarrow{a_{1}} \times \overrightarrow{a_{2}}\right|=\sqrt{3} a^{2}$.
a) See attached. There are twa atoms per primitwe cell: rue bleak and one ned.
d) $\vec{b}_{1}=\frac{2 \pi}{\sqrt{3} a} \hat{x} \quad \vec{b}_{2}=\frac{2 \pi}{a} \hat{y}$.
e) $\pi_{2}=\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\frac{(2 \pi)^{2}}{\Omega 2}$.
f) See attached

Problem 3.3 (f)
Direct lattice:

Reciprocal lattice:

