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ECE 4070: Prelim Exam 2 Solutions 
 
Problem 2 
a)  In the long wavelength limit (i.e. for 0q


), all atoms in the crystal move in phase for the acoustic 

modes. This means that during the motion no bonds are stretched or bent (i.e. no springs are compressed 
or stretched or bent) and therefore the energy required to excite such modes becomes vanishingly small in 
the long wavelength limit. In case of the optical modes, the atoms in the same primitive cell move out of 
phase and therefore bonds within the same primitive cell are always stretched or bent during motion even 
in the long wavelength limit (i.e. for 0q


). Therefore, there is an energy cost associated with exciting 

optical modes in the ling wavelength limit, and therefore   0q


  when 0q


.  

b) Consider the dynamical equation,        quMqquqD
 2 . Suppose we have solved it. Now let 

qq


 , we get,                quMqquqDquMqquqD 
 22 *   

Now complex conjugate both sides, and realizing that frequencies are always real, one gets,  

       quMqquqD  ** 2 
  

Since one has now the same matrix  qD


 on the left hand side as in the original case, the frequencies will 

be the same as that in the original case, i.e.    qq


  . We also get the additional result, 

   ququ *


 . The result    qq


   is a consequence of the time reversal symmetry of Newton’s 
second law.  
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tensor   for both will be proportional to their respective 1M  . If one applies E-field in the +y-direction, 

then the current in the +y-direction ought to be the same for both by symmetry. This means 1
yyM  is the 

same for both. Similarly, if one applies E-field in the x-direction then the current in the x-direction for 
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under an E-field in the –x-direction. This means 1
xxM  is also the same for both. Now if one applies an E-

field in the +y-direction, and looks at the current in the x-direction, it should have opposite signs for the 

two pockets and this implies that the off-diagonal components of 1M  have opposite signs for the two 

pockets. Therefore for the pocket at 
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Now consider the pocket at 




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a3
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. If an E-field is applied in the +y-direction, there cannot be any net 

current in the x-direction (since both +x-direction and –x-direction are equivalent by symmetry and the 

current cannot choose to flow in one and not in the other direction). Therefore, 1M  must be diagonal for 

this pocket. So all we need to do is to find a diagonalized version of the given 1M  for the pocket at 
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 (i.e. find its eigenvalues) and the result is: 



 

 2














21

121

21230

02123

mm

mm
M  

 
Problem 1 
a)  and b) Note that the group velocity in real space is always perpendicular to a constant energy surface 
in k-space. For a parabolic valence band, the velocity points inwards from the surface and outwards for a 
parabolic conduction band. One also has the relation from the homework problem: 

        00
2
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That tells that the trajectory in real space is a rotated version of the trajectory in k-space. With this 
information we can draw the trajectories as shown below (the real space origin is chosen arbitrarily).  

 
c) From your homework, the electron cyclotron frequency for a B-field in a particular direction is given 
by the square-root of the determinant of the inverse effective sub-matrix in the other two dimensions. So 

for the B-field in the x, y, and z-directions, the cyclotron frequencies are: zzyyo mmeB , 

zzxxo mmeB , and yyxxo mmeB , respectively. This gives: oxx mm 1.0 , oyy mm 4.0 , 

ozz mm 9.0 .  
 

d)      kkkakk
a

kvakEkE c






.4ˆ4 34  . The expression for the current is: 
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Where only terms linear in the E-field have been retained and the equilibrium term has been ignored. The 
spherically symmetric integral over the k-space is elementary at near-zero temperature and the result is, 
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Problem 3 
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Note that the size of the primitive cell is a3  and the size of the FBZ is a32 . 

b) If 21 MM   the lattice symmetry is not affected in any way since the spring constants still dictate that 
the primitive cell and the FBZ are of the same sizes as before. So one would not expect the bandgap to 
close.  
c) If 21 MM   and    then as far as the phonons are concerned the actual primitive cell is of size a  

and the FBZ is of size a2  and there is only one acoustic band. However, within the old FBZ of size 

a32  one will observe three bands (one acoustic and two optical). These bands will be identical to the 
single acoustic band of the larger FBZ folded into the smaller FBZ. Therefore, the lowest two will be 
degenerate at the zone edges and the upper two bands will be degenerate at the zone center, as shown 
below.  

 
d) The dispersion relation for a single acoustic band with spring constant    and lattice constant a  is 

form the lecture notes equal to    2sin4 1 qaMq    (LEFT FIG). Therefore, the frequency of the 

two degenerate optical phonons bands at the zone center in the smaller FBZ (RIGHT FIG) is equal to 

    1
32

1 32sin4 MqaMq
aq







. Third frequency is zero (acoustic band at zone center). 

You can check the result by direct solution of the matrix equation above.  
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