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Lecture 9

Quantum Dynamics, Measurement, and State Collapse

In this lecture you will learn:

•  Time evolution in quantum physics
•  Measurement of observables in quantum physics
•  Collapse of the quantum state post-measurement
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Time Evolution of Quantum States

   ˆi t H t
t
 


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

A formal solution of the above equation (for time-independent Hamiltonian) is:
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(The proof is by direct substitution)
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The operator exponential (just like matrix exponentials in linear algebra) is to be 
conceptually understood in terms of its Taylor series expansion:

Schrödinger equation is:

The expansion above is not the best way to solve problems!
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Time Evolution of Quantum States: Infinite Well Problem I
Consider an electron in an infinite potential well:

We had solved the following eigenvalue equation:

     
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We get:
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Suppose:  0 nt  
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Time Evolution of Quantum States: Infinite Well Problem II
Consider an electron in an infinite potential well 
and now consider an arbitrary initial state:

STEP 1: Express the initial state as a superposition 
of the energy eigenstates:

 0 j j
j

t c   

This can be done for any initial state since the energy 
eigenkets form a complete set:

 0t 

Need to find:

 t
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               0
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Time Evolution of Quantum States: Infinite Well Problem III

STEP 2: We then find the quantum state at any 
later time t >0 as follows:
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 0 j j
j

t c   

STEP 1: Express the initial state as a superposition 
of the energy eigenstates:
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Time Evolution of Quantum States: Infinite Well Problem IV

Suppose the initial state is:

x1 x2 x

 , 0x t 

1


Write the initial state as:

 0 n n
n
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Time Evolution of Quantum States: Infinite Well Problem V

Suppose the initial state is:

The state at any later time is:

   
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The wavefunction at later time is:
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  1 2
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Time Evolution of Quantum States: Wavepacket Example
Consider a particle in 1D in free space (potential is zero everywhere)

The wavefunction at time t = 0 is:

   
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

xx=0

2
x

|(x,t = 0)|2

Statement of the Problem: Need to find the wavefunction for t > 0 ,x t

Or in momentum basis:
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2
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|(p,t = 0)|2
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Time Evolution of Quantum States: Wavepacket Problem

Consider a particle in free-space:
2ˆˆ

2
pH
m



Momentum eigenstates are also energy 
eigenstates 2 2

ˆ

ˆˆ
2 2

p p p p

p pH p p p
m m



 

Suppose at time t=0:

What is the quantum state at time t > 0  ??

       ˆ0 1 0 0 , 0
2 2
dp dpt t p p t p t p   
 

 

 

 
        

 

    given0 , 0x t x t    

STEP 1: Express the initial state in the energy (momentum) eigenstates:

xx=0

2
x

|(x,t = 0)|2

E(p)
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Time Evolution of Quantum States: Wavepacket Problem

STEP 2: Find the state at later time as follows:

The wavefunction at later time is then:
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Time Evolution of Quantum States: Wavepacket Problem 
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The Time Evolution Operator: A Unitary Operator

   ˆi t H t
t
 






   
ˆ

0
Hi t

t e t 


 

The operator                is the time evolution operator:
Ĥi t

e

  

ˆ
ˆ

Hi t
U t e


 

     ˆ 0t U t t  

This operator is unitary and preserves the norm of the quantum state:

           
   
   

†ˆ ˆ0 0
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                  0 0

t t t U t U t t
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t t

   

 

 

  

  

  

 

 
   

†

ˆ

ˆ ˆ
†

†

ˆ

ˆ

ˆ ˆ 1̂

Hi t
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U t e

U t e e

U t U t







  

 



 
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Energy Measurement Problem
Suppose we know the Hamiltonian operator for a particle: Ĥ

And the quantum state at time t is:  t

If we want to find out the a-priori probability of finding the particle at location x upon 
making a measurement, the answer would be:   2,x t

Million Dollar Question: Now if particle energy is measured, what are the possible 
results? And what are the a-priori probabilities of finding each result ??

1) Consider the infinite potential well problem. A 
particle inside the well can only have energies E1, E2, 
E3, ….. i.e. the energy eigenvalues of the Hamiltonian!

2) Therefore, the possible result of any energy 
measurement will always be one of the eigenvalues 
of the Hamiltonian

E3

E2

E1

Some comments:



ECE 3030 – Summer 2009 – Cornell University

The Position Measurement Problem Revisited

Given a state            , the a-priori probability of finding the particle location to be x
upon making a measurement is: 

 t

  2,x t

How did we get the above result ???

Max Born’s Interpretation (Born Ansatz):

We took the state              and we took the inner product,

And then we said that the a-priori probability of finding the particle at the location x
(i.e. at the location corresponding to the ket ) is:

 t

   x x t 

x

    22,x t x t 
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The Position Measurement Problem Revisited
Max Born’s Interpretation dissected:

 t

    22', 'x t x t 

1̂dx x x



ˆ ' ' 'x x x x

● We are measuring position

● Position is an observable and is represented by the operator 

● Position operator has a complete set of eigenkets or eigenstates:

● According to the Born interpretation, given a quantum state             the a-priori 
probability of measuring the particle position to be x’ is given by taking the eigenket

corresponding to the eigenvalue x’ and then computing: 

x̂

'x
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Back to the Energy Measurement Problem

Question: Given a quantum state            , if particle energy is measured, what are the 
possible results? And what are the a-priori probabilities of finding each result ??

Suppose we know the Hamiltonian operator for a particle:

And its eigenstates and eigenvalues are:

Ĥ

ˆ
n n nH E 

A possible result of any energy measurement will always be one of the eigenvalues of 
the Hamiltonian. The a-priori probability of finding an energy eigenvalue En can be 
computed as follows:

We take the state              and we compute the inner product: t

 n t 

Then we take the squared magnitude of this inner product:

  2
n t 

The a-priori probability of finding the particle energy to be En is then: 

  2
n t 

 t

1̂j j
j

  
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Energy Measurement Problem

Suppose we know the Hamiltonian operator for a particle:

And its eigenstates and eigenvalues are:

Ĥ

ˆ n n nH E 

And suppose we expans the quantum state in terms of the energy eigenstates:

  j j
j

t a  

Example:

If an energy measurement is made, then the probability of finding the particle with 
energy En is:

  2 2
n nt a  

If the particle is in an energy eigenstate, e.g.                          , then upon measurement 
the particle will be found to have the corresponding eigenvalue Em as the energy with 
probability one

  mt 

The above arguments go over to the measurement of all observables!
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Observables and A-Priori Measurement Probabilities

Suppose at time t  the quantum state is:  t

Suppose at time t the observable  O is measured

The corresponding operator         has the following eigenvalues and eigenstates: 

ˆ
j j jO v v

Ô

2) If a measurement of the observable O is made, then the a-priori probability of 
finding the result n (i.e. one of the eigenvalues of the operator       ) is:

  2
nv t

Then:

1) The result of the measurement can only be one of the eigenvalues j of the 
operator Ô

3) All the a-priori probabilities must add up to unity:
  2 1n

n
v t 

 

   

   

   

2

1

n
n

n n
n

n n
n

v t

t v v t

t v v t

t t



 

 

 



 

 
  

 
 

1̂j j
j

v v 

Ô
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Observables and A-Priori Measurement Probabilities: Mean Values

Suppose at time t  the quantum state is:  t

Suppose at time t the observable  O is measured

The corresponding operator         has the following eigenvalues and eigenstates: 

ˆ
j j jO v v

Ô

2) If a measurement of the observable O is made, then the a-priori probability of 
finding the result n is:

  2
nv t

Mean value of the observable O 
(after many measurements) is: 

 

   

   

   

   

2

ˆ

ˆ

ˆ

n n
n

n n n
n

n n
n

n n
n

v t

t v v t

t O v v t

t O v v t

t O t

 

  

 

 

 



 

 

 
  

 

 Important !!
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Momentum Measurement Problem
Consider an electron in an infinite potential well:

  j j
j

t c  

The quantum state at time t is:

If particle momentum is measured, what are the possible results? And what are the 
a-priori probabilities of finding each result ??
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Momentum Measurement Problem

  j j
j

t c  

The momentum operator         has the  following eigenstates and eigenvalues:p̂

ˆ ' ' 'p p p p
Following the same rules, the probability of finding the momentum p upon making a 
momentum measurement is:

  2
p t

The mean value or the expectation value of the momentum will be:

         

           

2 ˆ
2 2 2

ˆˆ ˆ ˆ                             1
2

dp dp dpp t p t p p t p t p p p t

dpt p p p t t p t t p t

    
  

     


  

  




   

 
   

 
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   

   
2

2

j j j j
j j

j j
j

p t c p c p

p t c p

  

 

  

  

Momentum Measurement Problem

Suppose:   mt 

Then:    2 2
mp t p  The Fourier transform magnitude squared!!

  j j
j

t c  

Probability of finding the momentum p upon 
making a momentum measurement



ECE 3030 – Summer 2009 – Cornell University

Collapse of the Quantum State Upon Measurement 
Suppose at time t = t1 the quantum state is:

 1 j j
j

t t c   

Suppose at time t = t1 the energy of the particle is measured 

Suppose the result of this measurement was: Em

Question: what is the quantum state immediately after the measurement?

The quantum state represents ALL that is there and is knowable about reality, and 
therefore the quantum state immediately after the measurement must reflect this 
knowledge gained (by a conscious observer) from the act of measurement

The Copenhagen Interpretation:

Therefore, immediately after the 
measurement the quantum state 
must be:

 1 mt t  

1) The superposition in the quantum state has 
collapsed!!!

2) The quantum state collapses into the eigenstate 
of the operator corresponding to the measured 
eigenvalue
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Collapse of the Quantum State Upon Measurement 

Suppose at time t = t1 the quantum state is:

 1 j j
j

t t c   

Suppose at time t = t1 the energy of the particle is measured 

Suppose the result of this measurement was: Em

How to find the quantum state post-measurement?

1) Make a projection operator using the eigenstate corresponding to the eigenvalue 
measured:

2) Apply the projection operator to the quantum state just before the measurement:

3) Normalize the resulting state:

r̂ m mP  

     1 1 1r̂ m m m mP t t t t t t          

 

 
1

2
1

m m
m

m

t t

t t

  


 






This is the answer! 
(up to an irrelevant overall phase factor)

The quantum state collapses into the eigenstate of the 
operator corresponding to the measured eigenvalue
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Collapse of the Quantum State Upon Measurement: General Treatment 

Suppose at time t = t1 the quantum state is:  1t t 

Suppose at time t = t1 the observable  O is measured

The corresponding operator         has the following eigenvalues and eigenstates: 

ˆ
j j jO v v

Ô

Suppose the result of this measurement was: m

How to find the quantum state post-measurement?

We also throw in an added complexity: three eigenvectors of        have the same 
eigenvalue m

Ô

ˆ

ˆ

ˆ

m m m

n m n

p m p

O v v

O v v

O v v













Eigenvectors are different but the 
corresponding eigenvalues of the 
operator     are the same

Example: The eigenvectors        and         
of the Hamiltonian for a free particle 
have the same energy eigenvalue E(p)

Ô

p p
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Collapse of the Quantum State Upon Measurement: General Treatment 

How to find the quantum state post-measurement?

1) Make a projection operator using all the eigenstates of        that have the 
eigenvalue that is measured:

2) Apply this projection operator to the quantum state just before the measurement:

3) Normalize the resulting state:

r̂ m m n n p pP v v v v v v  

     

     
1 1

1 1 1

ˆ

                   

r m m n n p p

m m n n p p

P t t v v v v v v t t

v t t v v t t v v t t v

 

  

    

     

This is the answer! 
(up to an irrelevant overall phase factor)

Ô

     

     

1 1 1
22 2

1 1 1

m m n n p p

m n p

v t t v v t t v v t t v

v t t v t t v t t

  

  

    

    

The quantum state collapses into the eigen-subspace of the operator corresponding 
to the measured eigenvalue


