Lecture 9

Quantum Dynamics, Measurement, and State Collapse

In this lecture you will learn:

- Time evolution in quantum physics
- Measurement of observables in quantum physics
- Collapse of the quantum state post-measurement

Time Evolution of Quantum States

Schrödinger equation is:

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle
$$

A formal solution of the above equation (for time-independent Hamiltonian) is:

$$
|\psi(t)\rangle=e^{-i \frac{\hat{H}}{\hbar} t}|\psi(t=0)\rangle
$$

(The proof is by direct substitution)

The operator exponential (just like matrix exponentials in linear algebra) is to be conceptually understood in terms of its Taylor series expansion:

$$
e^{-i \frac{\hat{H}}{\hbar} t}=1+\left(-i \frac{\hat{H}}{\hbar} t\right)+\frac{1}{2!}\left(-i \frac{\hat{H}}{\hbar} t\right)^{2}+\frac{1}{3!}\left(-i \frac{\hat{H}}{\hbar} t\right)^{3}+
$$

The expansion above is not the best way to solve problems!

Time Evolution of Quantum States: Infinite Well Problem I

Consider an electron in an infinite potential well:
We had solved the following eigenvalue equation:

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \phi_{n}(x)=E_{n} \phi_{n}(x)} \\
& \Rightarrow\langle x| \hat{H}\left|\phi_{n}\right\rangle=E_{n}\left\langle x \mid \phi_{n}\right\rangle \\
& \Rightarrow \hat{H}\left|\phi_{n}\right\rangle=E_{n}\left|\phi_{n}\right\rangle
\end{aligned}
$$

Suppose: $|\psi(\boldsymbol{t}=0)\rangle=\left|\phi_{\boldsymbol{n}}\right\rangle$
Need to find: $|\psi(t)\rangle$

$$
\left\{\begin{array}{l}
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle \\
|\psi(t)\rangle=e^{-i \frac{\hat{H}}{\hbar} t}|\psi(t=0)\rangle
\end{array}\right.
$$

We get:

$$
|\psi(t)\rangle=e^{-i \frac{\hat{H}}{\hbar} t}|\psi(t=0)\rangle=e^{-i \frac{\hat{H}}{\hbar} t}\left|\phi_{n}\right\rangle=e^{-i \frac{E_{n}}{\hbar} t}\left|\phi_{n}\right\rangle
$$

Time Evolution of Quantum States: Infinite Well Problem II

Consider an electron in an infinite potential well and now consider an arbitrary initial state:

$$
|\psi(t=0)\rangle
$$

Need to find:

$$
|\psi(t)\rangle
$$

STEP 1: Express the initial state as a superposition of the energy eigenstates:

$$
|\psi(t=0)\rangle=\sum_{j} c_{j}\left|\phi_{j}\right\rangle
$$

This can be done for any initial state since the energy eigenkets form a complete set:

$$
\begin{array}{rc}
|\psi(\boldsymbol{t}=\mathbf{0})\rangle=\hat{\mathbf{1}}|\psi(\boldsymbol{t}=\mathbf{0})\rangle=\left(\sum_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|\right)|\psi(\boldsymbol{t}=\mathbf{0})\rangle=\sum_{\boldsymbol{j}} \underbrace{\left\langle\phi_{j} \mid \psi(\boldsymbol{t}=\mathbf{0})\right\rangle}_{j}\left|\phi_{j}\right\rangle \\
=\sum_{j} \boldsymbol{c}_{j}\left|\phi_{j}\right\rangle \quad\left\{\boldsymbol{c}_{j}=\left\langle\phi_{j} \mid \psi(\boldsymbol{t}=\mathbf{0})\right\rangle\right.
\end{array}
$$

Time Evolution of Quantum States: Infinite Well Problem III

STEP 1: Express the initial state as a superposition of the energy eigenstates:

$$
|\psi(t=0)\rangle=\sum_{j} c_{j}\left|\phi_{j}\right\rangle
$$

STEP 2: We then find the quantum state at any later time $t>0$ as follows:

$$
\begin{aligned}
|\psi(t)\rangle & =e^{-i \frac{\hat{H}}{\hbar} t}|\psi(t=0)\rangle \\
& =e^{-i \frac{\hat{H}}{\hbar} t} \sum_{j} c_{j}\left|\phi_{j}\right\rangle=\sum_{j} c_{j} e^{-i \frac{\hat{H}}{\hbar} t}\left|\phi_{j}\right\rangle \\
& =\sum_{j} c_{j} e^{-i \frac{E_{j}}{\hbar} t}\left|\phi_{j}\right\rangle
\end{aligned}
$$

$$
\left\{\begin{array}{l}
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle \\
|\psi(t)\rangle=e^{-i \frac{\hat{H}}{\hbar} t}|\psi(t=0)\rangle
\end{array}\right.
$$

Time Evolution of Quantum States: Infinite Well Problem IV

Suppose the initial state is:

Write the initial state as:

$$
\begin{aligned}
& |\psi(t=0)\rangle=\sum_{n} a_{n}\left|\phi_{n}\right\rangle \\
& a_{m}=\left\langle\phi_{m} \mid \psi(t=0)\right\rangle \\
& \Rightarrow a_{m}=\int d x\left\langle\phi_{m} \mid x\right\rangle\langle x \mid \psi(t=0)\rangle=\int_{-\infty}^{\infty} d x \phi_{m}^{*}(x) \psi(x, t=0) \\
& \Rightarrow a_{m}=\frac{1}{\sqrt{\Delta}} \int_{x_{1}}^{x_{2}} d x \phi_{m}^{*}(x)
\end{aligned}
$$

Time Evolution of Quantum States: Infinite Well Problem V

Suppose the initial state is:

$$
\psi(x, t=0)=\left\{\begin{array}{cl}
\frac{1}{\sqrt{\Delta}} & x_{1} \leq x \leq x_{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

The state at any later time is:

$$
\begin{aligned}
|\psi(t)\rangle & =e^{-i \frac{\hat{H}}{\hbar} t}|\psi(t=0)\rangle \\
& =e^{-i \frac{\hat{H}}{\hbar} t} \sum_{j} c_{j}\left|\phi_{j}\right\rangle=\sum_{j} c_{j} e^{-i \frac{\hat{H}}{\hbar} t}\left|\phi_{j}\right\rangle \\
& =\sum_{j} c_{j} e^{-i \frac{E_{j}}{\hbar} t}\left|\phi_{j}\right\rangle
\end{aligned}
$$

The wavefunction at later time is:

$$
\psi(x, t)=\langle x \mid \psi(t)\rangle=\sum_{j} c_{j} e^{-i \frac{E_{j}}{\hbar} t} \phi_{j}(x)
$$

Time Evolution of Quantum States: Wavepacket Example

Consider a particle in 1D in free space (potential is zero everywhere)

The wavefunction at time $\boldsymbol{t}=0$ is:

$$
\begin{aligned}
\langle x \mid \psi(t=0)\rangle & =\psi(x, t=0) \\
& =\left(\frac{1}{2 \pi \sigma_{x}^{2}}\right)^{1 / 4} e^{-\frac{x^{2}}{4 \sigma_{x}^{2}}} e^{i \frac{p_{0}}{\hbar} x}
\end{aligned}
$$

Or in momentum basis:

$$
\begin{aligned}
\langle p \mid \psi(t=0)\rangle & =\psi(p, t=0) \quad \\
& =\int_{-\infty}^{\infty} d x \psi(x, t=0) \frac{e^{-i p x}}{\sqrt{\hbar}}=\left(\frac{2 \pi}{\sigma_{p}^{2}}\right)^{1 / 4} e^{-\frac{\left(p-p_{o}\right)^{2}}{4 \sigma_{p}^{2}}} \quad\left\{\sigma_{p}^{2}=\frac{\hbar^{2}}{4 \sigma_{x}^{2}}\right.
\end{aligned}
$$

Statement of the Problem: Need to find the wavefunction $\psi(x, t)$ for $t>0$

Time Evolution of Quantum States: Wavepacket Problem

Consider a particle in free-space: $\quad \hat{H}=\frac{\hat{p}^{2}}{2 m}$

Momentum eigenstates are also energy eigenstates

$$
\hat{\boldsymbol{p}}|\boldsymbol{p}\rangle=\boldsymbol{p}|\boldsymbol{p}\rangle
$$

Suppose at time $t=0$:

$$
\hat{H}|p\rangle=\frac{\hat{p}^{2}}{2 m}|p\rangle=\frac{p^{2}}{2 m}|p\rangle
$$

$$
\langle x \mid \psi(t=0)\rangle=\psi(x, t=0)=\text { given }
$$

STEP 1: Express the initial state in the energy (momentum) eigenstates:

$$
|\psi(t=0)\rangle=\hat{1}|\psi(t=0)\rangle=\left(\int_{-\infty}^{\infty} \frac{d p}{2 \pi}|p\rangle\langle p|\right)|\psi(t=0)\rangle=\int_{-\infty}^{\infty} \frac{d p}{2 \pi} \psi(p, t=0)|p\rangle
$$

What is the quantum state at time $t>0$??

Time Evolution of Quantum States: Wavepacket Problem

STEP 2: Find the state at later time as follows:

$$
\begin{aligned}
|\psi(t)\rangle & =e^{-i \frac{\hat{H}}{\hbar} t}|\psi(t=0)\rangle \\
& =e^{-i \frac{\hat{H}}{\hbar} t} \int_{-\infty}^{\infty} \frac{d p}{2 \pi} \psi(p, t=0)|p\rangle=\int_{-\infty}^{\infty} \frac{d p}{2 \pi} \psi(p, t=0) e^{-i \frac{\hat{H}}{\hbar} t}|p\rangle \\
& =\int_{-\infty}^{\infty} \frac{d p}{2 \pi} \psi(p, t=0) e^{-i \frac{E(p)}{\hbar} t}|p\rangle
\end{aligned}
$$

The wavefunction at later time is then:

$$
\begin{aligned}
\Rightarrow \psi(x, t) & =\langle x \mid \psi(t)\rangle=\int_{-\infty}^{\infty} \frac{d p}{2 \pi} \psi(p, t=0) e^{-i \frac{E(p)}{\hbar} t}\langle x \mid p\rangle \\
& =\int_{-\infty}^{\infty} \frac{d p}{2 \pi} \psi(p, t=0) \frac{e^{i \frac{p}{\hbar} x} e^{-i \frac{E(p)}{\hbar} t}}{\sqrt{\hbar}}
\end{aligned}
$$

Time Evolution of Quantum States: Wavepacket Problem

$$
\psi(x, t)=\int_{-\infty}^{\infty} \frac{d p}{2 \pi}\left(\frac{2 \pi}{\sigma_{p}^{2}}\right)^{1 / 4} e^{-\frac{\left(p-p_{0}\right)^{2}}{4 \sigma_{p}^{2}}} \frac{e^{i \frac{p}{\hbar} x} e^{-i \frac{E(p)}{\hbar} t}}{\sqrt{\hbar}} \quad\left\{\sigma_{p}^{2}=\frac{\hbar^{2}}{4 \sigma_{x}^{2}}\right.
$$

$$
=\left(\frac{\sigma_{x}^{2}}{2 \pi}\right)^{1 / 4} \frac{1}{\sqrt{\sigma_{x}^{2}+i \frac{\hbar}{2 m} t}} e^{-\frac{\left(x-\frac{p_{0}}{m} t\right)^{2}}{4\left[\sigma_{x}^{2}+i \frac{\hbar}{2 m} t\right]}} e^{i p_{o}\left(x-\frac{p_{o}}{2 m} t\right)}
$$

The Time Evolution Operator: A Unitary Operator

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle \\
|\psi(t)\rangle=e^{-i \frac{\hat{H}}{\hbar}}|\psi(t=0)\rangle
\end{gathered}
$$

The operator $e^{-i \frac{\hat{H}}{\hbar} t}$ is the time evolution operator: $\hat{U}(t)=e^{-i \frac{\hat{H}}{\hbar} t}$

$$
|\psi(t)\rangle=\hat{U}(t)|\psi(t=\mathbf{0})\rangle
$$

This operator is unitary and preserves the norm of the quantum state:

$$
\begin{aligned}
\langle\psi(t) \mid \psi(t)\rangle & =\langle\psi(t=0)| \hat{U}^{\dagger}(t) \hat{U}(t)|\psi(t=0)\rangle \\
& =\langle\psi(t=0)| \hat{\mathbf{1}}|\psi(t=0)\rangle \\
& =\langle\psi(t=0) \mid \psi(t=0)\rangle
\end{aligned} \quad\left\{\begin{array}{l}
\hat{U}(t)=e^{-i \frac{\hat{H}}{\hbar} t} \\
\Rightarrow \hat{U}^{\dagger}(t)=e^{i \frac{\hat{H}^{\dagger}}{\hbar} t}=e^{-i \frac{\hat{H}}{\hbar} t} \\
\Rightarrow \hat{U}^{\dagger}(t) \hat{U}(t)=\hat{1}
\end{array}\right.
$$

Energy Measurement Problem

Suppose we know the Hamiltonian operator for a particle: $\hat{\boldsymbol{H}}$
And the quantum state at time t is: $|\psi(t)\rangle$

If we want to find out the a-priori probability of finding the particle at location x upon making a measurement, the answer would be: $|\psi(x, t)|^{2}$

Million Dollar Question: Now if particle energy is measured, what are the possible results? And what are the a-priori probabilities of finding each result ??

Some comments:

1) Consider the infinite potential well problem. A particle inside the well can only have energies E_{1}, E_{2}, E_{3}, \ldots. i.e. the energy eigenvalues of the Hamiltonian!
2) Therefore, the possible result of any energy measurement will always be one of the eigenvalues
 of the Hamiltonian

The Position Measurement Problem Revisited

Given a state $|\psi(t)\rangle$, the a-priori probability of finding the particle location to be x upon making a measurement is:

$$
|\psi(x, t)|^{2}
$$

How did we get the above result ???

Max Born's Interpretation (Born Ansatz):
We took the state $|\psi(t)\rangle$ and we took the inner product,

$$
\psi(x)=\langle x \mid \psi(t)\rangle
$$

And then we said that the a-priori probability of finding the particle at the location x (i.e. at the location corresponding to the ket $|\boldsymbol{x}\rangle$) is:

$$
|\psi(x, t)|^{2}=|\langle x \mid \psi(t)\rangle|^{2}
$$

The Position Measurement Problem Revisited

Max Born's Interpretation dissected:

- We are measuring position
- Position is an observable and is represented by the operator $\hat{\boldsymbol{x}}$
- Position operator has a complete set of eigenkets or eigenstates:

$$
\hat{x}\left|x^{\prime}\right\rangle=x^{\prime}\left|x^{\prime}\right\rangle \longleftrightarrow \int_{-\infty}^{\infty} d x|x\rangle\langle x|=\hat{1}
$$

- According to the Born interpretation, given a quantum state $|\psi(\boldsymbol{t})\rangle$ the a-priori probability of measuring the particle position to be x^{\prime} is given by taking the eigenket $\left|x^{\prime}\right\rangle$ corresponding to the eigenvalue x^{\prime} and then computing:

$$
\left|\psi\left(x^{\prime}, t\right)\right|^{2}=\left|\left\langle x^{\prime} \mid \psi(t)\right\rangle\right|^{2}
$$

Back to the Energy Measurement Problem

Question: Given a quantum state $|\psi(t)\rangle$, if particle energy is measured, what are the possible results? And what are the a-priori probabilities of finding each result ??

Suppose we know the Hamiltonian operator for a particle: \hat{H}
And its eigenstates and eigenvalues are: $\hat{H}\left|\phi_{n}\right\rangle=E_{n}\left|\phi_{n}\right\rangle \longleftrightarrow \sum_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|=\hat{\mathbf{1}}$ A possible result of any energy measurement will always be one of the eigenvalues of the Hamiltonian. The a-priori probability of finding an energy eigenvalue E_{n} can be computed as follows:

We take the state $|\psi(t)\rangle$ and we compute the inner product:

$$
\left\langle\phi_{n} \mid \psi(t)\right\rangle
$$

Then we take the squared magnitude of this inner product:

$$
\left|\left\langle\phi_{n} \mid \psi(t)\right\rangle\right|^{2}
$$

The a-priori probability of finding the particle energy to be E_{n} is then:

$$
\left|\left\langle\phi_{n} \mid \psi(t)\right\rangle\right|^{2}
$$

Energy Measurement Problem

Example:

Suppose we know the Hamiltonian operator for a particle: \hat{H}
And its eigenstates and eigenvalues are: $\hat{H}\left|\phi_{n}\right\rangle=E_{n}\left|\phi_{n}\right\rangle$

And suppose we expans the quantum state in terms of the energy eigenstates:

$$
|\psi(t)\rangle=\sum_{j} a_{j}\left|\phi_{j}\right\rangle
$$

If an energy measurement is made, then the probability of finding the particle with energy E_{n} is:

$$
\left|\left\langle\phi_{n} \mid \psi(t)\right\rangle\right|^{2}=\left|a_{n}\right|^{2}
$$

If the particle is in an energy eigenstate, e.g. $|\psi(t)\rangle=\left|\phi_{m}\right\rangle$, then upon measurement the particle will be found to have the corresponding eigenvalue E_{m} as the energy with probability one

The above arguments go over to the measurement of all observables!

Observables and A-Priori Measurement Probabilities

Suppose at time \boldsymbol{t} the quantum state is: $|\psi(t)\rangle$
Suppose at time t the observable O is measured
The corresponding operator $\hat{\boldsymbol{O}}$ has the following eigenvalues and eigenstates:

$$
\hat{\boldsymbol{O}}\left|\boldsymbol{v}_{\boldsymbol{j}}\right\rangle=\lambda_{\boldsymbol{j}}\left|\boldsymbol{v}_{\boldsymbol{j}}\right\rangle \longleftrightarrow \sum_{j}\left|v_{j}\right\rangle\left\langle\boldsymbol{v}_{\boldsymbol{j}}\right|=\hat{\boldsymbol{1}}
$$

Then:

1) The result of the measurement can only be one of the eigenvalues λ_{j} of the operator \hat{O}
2) If a measurement of the observable O is made, then the a-priori probability of finding the result λ_{n} (i.e. one of the eigenvalues of the operator $\hat{\boldsymbol{O}}$) is:

$$
\left|\left\langle v_{n} \mid \psi(t)\right\rangle\right|^{2}
$$

3) All the a-priori probabilities must add up to unity:

$$
\sum_{n}\left|\left\langle v_{n} \mid \psi(t)\right\rangle\right|^{2}=1
$$

$$
\left\{\begin{array}{l}
\sum_{n}\left|\left\langle v_{n} \mid \psi(t)\right\rangle\right|^{2} \\
=\sum_{n}\left\langle\psi(t) \mid v_{n}\right\rangle\left\langle v_{n} \mid \psi(t)\right\rangle \\
=\langle\psi(t)|\left(\sum_{n}\left|v_{n}\right\rangle\left\langle v_{n}\right|\right)|\psi(t)\rangle \\
=\langle\psi(t) \mid \psi(t)\rangle=1
\end{array}\right.
$$

Observables and A-Priori Measurement Probabilities: Mean Values

Suppose at time \boldsymbol{t} the quantum state is: $|\psi(t)\rangle$
Suppose at time t the observable O is measured
The corresponding operator $\hat{\boldsymbol{O}}$ has the following eigenvalues and eigenstates:

$$
\hat{\boldsymbol{O}}\left|\boldsymbol{v}_{\boldsymbol{j}}\right\rangle=\lambda_{\boldsymbol{j}}\left|\boldsymbol{v}_{\boldsymbol{j}}\right\rangle
$$

2) If a measurement of the observable O is made, then the a-priori probability of finding the result λ_{n} is:

$$
\left|\left\langle v_{n} \mid \psi(t)\right\rangle\right|^{2}
$$

Mean value of the observable 0 (after many measurements) is:

$$
\begin{aligned}
& \sum_{n}\left|\left\langle v_{n} \mid \psi(t)\right\rangle\right|^{2} \lambda_{n} \\
& =\sum_{n} \lambda_{n}\left\langle\psi(t) \mid v_{n}\right\rangle\left\langle v_{n} \mid \psi(t)\right\rangle \\
& =\sum_{n}\langle\psi(t)| \hat{O}\left|v_{n}\right\rangle\left\langle v_{n} \mid \psi(t)\right\rangle \\
& =\langle\psi(t)| \hat{O}\left(\sum_{n}\left|v_{n}\right\rangle\left\langle v_{n}\right|\right)|\psi(t)\rangle \\
& =\langle\psi(t)| \hat{O}|\psi(t)\rangle \quad \longrightarrow \text { Important !! }
\end{aligned}
$$

Momentum Measurement Problem

Consider an electron in an infinite potential well:

The quantum state at time \boldsymbol{t} is:

$$
|\psi(t)\rangle=\sum_{j} c_{j}\left|\phi_{j}\right\rangle
$$

If particle momentum is measured, what are the possible results? And what are the a-priori probabilities of finding each result ??
Momentum Measurement Problem

The momentum operator $\hat{\boldsymbol{p}}$ has the following eigenstates and eigenvalues:

$$
\hat{\boldsymbol{p}}\left|p^{\prime}\right\rangle=p^{\prime}\left|p^{\prime}\right\rangle
$$

Following the same rules, the probability of finding the momentum p upon making a momentum measurement is:

$$
|\langle p \mid \psi(t)\rangle|^{2}
$$

The mean value or the expectation value of the momentum will be:

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{d p}{2 \pi}|\langle p \mid \psi(t)\rangle|^{2} p & =\int_{-\infty}^{\infty} \frac{d p}{2 \pi}\langle\psi(t) \mid p\rangle\langle p \mid \psi(t)\rangle p=\int_{-\infty}^{\infty} \frac{d p}{2 \pi}\langle\psi(t)| \hat{p}|p\rangle\langle p \mid \psi(t)\rangle \\
& =\langle\psi(t)| \hat{p}\left(\int_{-\infty}^{\infty} \frac{d p}{2 \pi}|p\rangle\langle p|\right)|\psi(t)\rangle=\langle\psi(t)| \hat{p} \hat{1}|\psi(t)\rangle=\langle\psi(t)| \hat{p}|\psi(t)\rangle
\end{aligned}
$$

Momentum Measurement Problem

$$
\begin{aligned}
& |\psi(t)\rangle=\sum_{j} c_{j}\left|\phi_{j}\right\rangle \\
& \langle p \mid \psi(t)\rangle=\sum_{j} c_{j}\left\langle p \mid \phi_{j}\right\rangle=\sum_{j} c_{j} \phi_{j}(p) \\
& \Rightarrow|\langle p \mid \psi(t)\rangle|^{2}=\left|\sum_{j} c_{j} \phi_{j}(p)\right|^{2}
\end{aligned}
$$

Probability of finding the momentum p upon making a momentum measurement

Suppose: $|\boldsymbol{\psi}(\boldsymbol{t})\rangle=\left|\phi_{\boldsymbol{m}}\right\rangle$

Then: $\quad|\langle\boldsymbol{p} \mid \psi(\boldsymbol{t})\rangle|^{2}=\left|\phi_{m}(\boldsymbol{p})\right|^{2} \quad$ The Fourier transform magnitude squared!!

Collapse of the Quantum State Upon Measurement

Suppose at time $t=t_{1}$ the quantum state is:

$$
\left|\psi\left(t=t_{1}\right)\right\rangle=\sum_{j} c_{j}\left|\phi_{j}\right\rangle
$$

Suppose at time $t=t_{1}$ the energy of the particle is measured
Suppose the result of this measurement was: E_{m}

Question: what is the quantum state immediately after the measurement?
The Copenhagen Interpretation:

The quantum state represents ALL that is there and is knowable about reality, and therefore the quantum state immediately after the measurement must reflect this knowledge gained (by a conscious observer) from the act of measurement

Therefore, immediately after the measurement the quantum state must be:

$$
\left|\psi\left(\boldsymbol{t}=\boldsymbol{t}_{1}^{+}\right)\right\rangle=\left|\phi_{\boldsymbol{m}}\right\rangle
$$

1) The superposition in the quantum state has collapsed!!!
2) The quantum state collapses into the eigenstate of the operator corresponding to the measured eigenvalue

Collapse of the Quantum State Upon Measurement

Suppose at time $t=t_{1}$ the quantum state is:

$$
\left|\psi\left(t=t_{1}\right)\right\rangle=\sum_{j} c_{j}\left|\phi_{j}\right\rangle
$$

Suppose at time $t=t_{1}$ the energy of the particle is measured
Suppose the result of this measurement was: E_{m}

How to find the quantum state post-measurement?

1) Make a projection operator using the eigenstate corresponding to the eigenvalue measured:

$$
\hat{P}_{r}=\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|
$$

2) Apply the projection operator to the quantum state just before the measurement:

$$
\hat{P}_{r}\left|\psi\left(t=t_{1}\right)\right\rangle=\left|\phi_{m}\right\rangle\left\langle\phi_{m} \mid \psi\left(t=t_{1}\right)\right\rangle=\left\langle\phi_{m} \mid \psi\left(t=t_{1}\right)\right\rangle\left|\phi_{m}\right\rangle
$$

3) Normalize the resulting state:

$$
\frac{\left\langle\phi_{m} \mid \psi\left(t=t_{1}\right)\right\rangle\left|\phi_{m}\right\rangle}{\sqrt{\left|\left\langle\phi_{m} \mid \psi\left(t=t_{1}\right)\right\rangle\right|^{2}}} \propto\left|\phi_{m}\right\rangle
$$

This is the answer!
(up to an irrelevant overall phase factor)
The quantum state collapses into the eigenstate of the operator corresponding to the measured eigenvalue

Collapse of the Quantum State Upon Measurement: General Treatment

Suppose at time $t=\boldsymbol{t}_{1}$ the quantum state is: $\left|\psi\left(t=t_{1}\right)\right\rangle$
Suppose at time $t=t_{1}$ the observable O is measured
The corresponding operator $\hat{\boldsymbol{O}}$ has the following eigenvalues and eigenstates:

$$
\hat{\boldsymbol{O}}\left|\boldsymbol{v}_{\boldsymbol{j}}\right\rangle=\lambda_{\boldsymbol{j}}\left|\boldsymbol{v}_{\boldsymbol{j}}\right\rangle
$$

Suppose the result of this measurement was: λ_{m}
How to find the quantum state post-measurement?
We also throw in an added complexity: three eigenvectors of $\hat{\boldsymbol{O}}$ have the same eigenvalue λ_{m}

$$
\begin{aligned}
& \hat{O}\left|v_{\boldsymbol{m}}\right\rangle=\lambda_{\boldsymbol{m}}\left|\boldsymbol{v}_{\boldsymbol{m}}\right\rangle \\
& \hat{O}\left|v_{\boldsymbol{n}}\right\rangle=\lambda_{\boldsymbol{m}}\left|\boldsymbol{v}_{\boldsymbol{n}}\right\rangle \\
& \hat{O}\left|v_{\boldsymbol{p}}\right\rangle=\lambda_{\boldsymbol{m}}\left|\boldsymbol{v}_{\boldsymbol{p}}\right\rangle
\end{aligned}
$$

Eigenvectors are different but the corresponding eigenvalues of the operator \hat{O} are the same

Example: The eigenvectors $|\boldsymbol{p}\rangle$ and $|-\boldsymbol{p}\rangle$ of the Hamiltonian for a free particle have the same energy eigenvalue $E(p)$

Collapse of the Quantum State Upon Measurement: General Treatment

How to find the quantum state post-measurement?

1) Make a projection operator using all the eigenstates of \hat{O} that have the eigenvalue that is measured:

$$
\hat{P}_{r}=\left|v_{m}\right\rangle\left\langle v_{m}\right|+\left|v_{n}\right\rangle\left\langle v_{n}\right|+\left|v_{p}\right\rangle\left\langle v_{p}\right|
$$

2) Apply this projection operator to the quantum state just before the measurement:

$$
\begin{aligned}
\hat{P}_{r}\left|\psi\left(\boldsymbol{t}=\boldsymbol{t}_{1}\right)\right\rangle & =\left(\left|\boldsymbol{v}_{\boldsymbol{m}}\right\rangle\left\langle\boldsymbol{v}_{\boldsymbol{m}}\right|+\left|\boldsymbol{v}_{\boldsymbol{n}}\right\rangle\left\langle\boldsymbol{v}_{\boldsymbol{n}}\right|+\left|\boldsymbol{v}_{\boldsymbol{p}}\right\rangle\left\langle\boldsymbol{v}_{\boldsymbol{p}}\right|\right)\left|\psi\left(\boldsymbol{t}=\boldsymbol{t}_{\mathbf{1}}\right)\right\rangle \\
& =\left\langle\boldsymbol{v}_{\boldsymbol{m}} \mid \psi\left(\boldsymbol{t}=\boldsymbol{t}_{\mathbf{1}}\right)\right\rangle\left|\boldsymbol{v}_{\boldsymbol{m}}\right\rangle+\left\langle\boldsymbol{v}_{\boldsymbol{n}} \mid \psi\left(\boldsymbol{t}=\boldsymbol{t}_{\mathbf{1}}\right)\right\rangle\left|\boldsymbol{v}_{\boldsymbol{n}}\right\rangle+\left\langle\boldsymbol{v}_{\boldsymbol{p}} \mid \psi\left(\boldsymbol{t}=\boldsymbol{t}_{1}\right)\right\rangle\left|\boldsymbol{v}_{\boldsymbol{p}}\right\rangle
\end{aligned}
$$

3) Normalize the resulting state:

$$
\frac{\left\langle v_{m} \mid \psi\left(t=t_{1}\right)\right\rangle\left|v_{m}\right\rangle+\left\langle v_{n} \mid \psi\left(t=t_{1}\right)\right\rangle\left|v_{n}\right\rangle+\left\langle v_{p} \mid \psi\left(t=t_{1}\right)\right\rangle\left|v_{p}\right\rangle}{\sqrt{\left|\left\langle v_{m} \mid \psi\left(t=t_{1}\right)\right\rangle\right|^{2}+\left|\left\langle v_{n} \mid \psi\left(t=t_{1}\right)\right\rangle\right|^{2}+\left|\left\langle v_{p} \mid \psi\left(t=t_{1}\right)\right\rangle\right|^{2}}}
$$

This is the answer!
(up to an irrelevant overall phase factor)
The quantum state collapses into the eigen-subspace of the operator corresponding to the measured eigenvalue

