
ECE 3030 – Summer 2009 – Cornell University

Lecture 8

Operators, States, and Basis in Quantum Mechanics

In this lecture you will learn:

• How to formulate a basis-independent way of doing quantum physics
• Representation of observables as operators
• Representation of quantum states as vectors
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The Quantum Story Continues: Inductive Reasoning 

Wavefunction

 ,r t


Spin Light and 
photons

Qubits

Some fundamental universal principle (??)

Superconductive 
circuits
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photons

QubitsSuperconductive 
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The Fundamental Principle: The Quantum State

A quantum state (of any particle or system) is represented by the state 
vector               which is a vector in a Hilbert space               t
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Quantum State vs Quantum Wavefunction of a Particle

We can write the projection of the vector                or  the component of the vector        
in position basis as:

 t

   ,x t x t 

         1̂ ,t t dx x x t dx x x t dx x t x    
  

  

 
      

 

We call it the “wavefunction” !

The wavefunction is a “component” of the state vector in the position 
basis  

A quantum state of a particle is fully described by the state vector               t

The quantum state             is the real deal ! t

 t

 ,x t
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Complete Basis Sets in 1D 

1̂
2
dk k k







1̂dx x x





So far we have seen the following complete basis sets for the Hilbert space of square 
integrable functions in 1D:

Position basis:

Plane wave basis:

Inner product between the basis vectors: ikxx k e

Orthogonality:  ' 'x x x x 

Orthogonality:  ' 2 'k k k k 
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So far we have seen the following complete basis sets for the Hilbert space of square 
integrable functions in 1D:

Position basis:

Plane wave basis:

Inner product between the basis vectors: ikxx k e

         1̂ ,t t dx x x t dx x x t dx x t x    
  

  

 
      

 

         1̂ ,
2 2 2
dk dk dkt t k k t k k t k t k    
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Complete Basis Sets in 1D 
Lets try to write the components of the vector               in two different basis: t

   ,x t x t 

   ,k t k t 

       

   

ˆ, 1

           , ,ikx

k t k t k t k dx x x t

dx k x x t dx e x t

   

 




 



 

 
    

 

  

What is the relationship between the wavefunctions in the two basis?

A Fourier 
transform !!

The component of the wavefunction in the plane wave basis is just the Fourier 
transform of the wavefunction in the position basis !!

Wavefunction in position basis

Wavefunction in plane wave 
basis
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Complete Basis Sets in 1D: Momentum Basis 

   ,p t p t 

Since momentum is related to the wavevector by just a multiplicative constant:
p k 

We define a momentum basis as:

1p k p  


 

1̂
2

1 1 1̂
2 2

dk k k

d k dpk k p p



 




 

 



   


 

Then:

 

   

 

' 2 '
1 1 1' 2 ' 2 '

' 2 '

k k k k

k k k k k k

p p p p



  



 

    

  

 
 

Completeness of 
the momentum 
basis

Orthogonality

1
pi x

ex p x k p   



 

This         is just a 
convention
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Complete Basis Sets in 1D: Momentum Basis 

Wavefunction in the momentum basis is:

       

   

ˆ, 1

           , ,

pi x

p t p t p t p dx x x t

edx p x x t dx x t

   

 






 

 

 
    

 

  




Again a 
Fourier 
transform
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Mean Values or Expectation Values of Observables in 1D 

Position:

Potential Energy:

Momentum:

Kinetic Energy:

Total Energy:

       * , ,x t dx x t x x t 



 

     * , ,p t dx x t x t
i x

 




     



           PE * , ,t V x t dx x t V x x t 



     

     
2 2

2KE * , ,
2

t dx x t x t
m x

 




 
  

  



       
2 2

2* , ,
2

E t dx x t V x x t
m x

 




 
   

  



These are all 
basis dependent 
expressions!
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The Momentum Operator in 1D

Consider the expectation value:

We will now write it in a different way:

     * , ,p t dx x t x t
i x

 




     



     

 

   

'

'

*

* , ,

'         ,
2 2

'         ', ,
2 2

'         
2 2

p pi x i x

p pi x i x

p t dx x t x t
i x

dp e dp edx p t
i x

dp dp e edx p t p t
i x

dp dp

 


 

 
 

 






  

  


  

  



     

   
               
   

       



 

 




 


 

 

 

 

     

   

'

*

*

', ,

2 ''         ', ,
2 2

         * , ,
2

p p
i x
edx p t p p t

p pdp dp p t p p t

dp p t p p t

 

 
 

 

 



  

 
 

 




  


  

 








       , , , ,
2

p pi x i x
dp e ex t p t p t dx x t   
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The Momentum Operator in 1D

         * , , * , ,
2
dpp t dx x t x t p t p p t

i x
   



 

 

     


The quantity we are trying to find is the same, but the appearance of the expression 
changes depending on the basis used (position basis or the momentum basis)

Can we write this in a basis-independent way??? The answer is yes!! 

     ˆp t t p t 

But what is this operator?
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The Momentum Operator in 1D

Momentum operator has the following properties:p̂

ˆ ' ' 'p p p p

     

     

   

ˆˆ ˆ ˆ1
2

ˆ                 , , ,
2 2 2

,                ,
2

pi x

pi x

dpx p t x p t x p p p t

dp dp dp ex p p p t p x p p t p p t

x tdp e p t
i x i x

  


  
  










  

  





 
   

 

    


 

 







 


1)

3)

momentum basis are eigenstates of the momentum operator

†ˆ ˆp p2) Momentum operator is Hermitian (or self-adjoint)

The action of momentum 
operator is a derivative in 
the position representation 
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The Momentum Operator in 1D

              
* * *†ˆ ˆ ˆ ,p p t t p p t p p p t p p p t p p t         4)

         

       

   
   

ˆ* , , * ,

ˆ ˆ         

ˆ ˆ         1
ˆ         

p t dx x t x t dx x t x p t
i x

dx t x x p t t dx x x p t

t p t

t p t

   

   

 

 

 

 
 

 

     

 
   

 






Finally, the expectation value of the momentum becomes: 

The action of momentum operator in momentum basis is just 
a multiplication

5)

   

' 'ˆ ˆˆ ˆ ˆ ˆ1 1 ' ' ' '
2 2 2 2
' '  ' ' ' ' 2 ' '

2 2 2 2

  
2

dp dp dp dpp p p p p p p p p p p p

dp dp dp dpp p p p p p p p p p

dp p p p

   

 
   



   

   
   

   




   
        

   

     

  Any operator is diagonal in the basis formed by 
its own eigenvectors
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The Momentum Operator in 1D

6) Lets check out the eigenstates of the momentum operator:

ˆ ' ' 'p p p p

Suppose the quantum state of a particle is the eigenstate of the momentum operator:

'p 

Then what is the wavefunction of the particle?

 

'

'

pi x
ex x x p   



A plane wave with 
wavevector 'p 

Thus, plane waves are wavefunctions of the eigenstates of the momentum operator!
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We see this (or project this) equation in the position basis:

ˆ ' ' '

' ' '

x p p p x p

x p p x p
i x




 




If you didn’t know what               was, you can conclude from the above 
eigenvalue equation that:

'x p

'
'

pi x
x p e 

The Momentum Operator in 1D

7) Lets check out the eigenstates of the momentum operator once more:

ˆ ' ' 'p p p p
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The Position Operator in 1D
We need to write the following in a basis-independent way:

      * , ,x t dx x t x x t 



 

Answer:
     ˆx t t x t 

Here         is the position operator with the following properties:x̂
ˆ ' ' 'x x x x1)

3)

position basis are eigenstates of the position operator
†ˆ ˆx x2) Position operator is Hermitian (or self-adjoint)

           

       

ˆ ˆ

          * , ,

x t t x t x t t dx x x x t

dx t x x x t dx x t x x t

   

   




 

 

 
    

 

  

x̂ dx x x x



  Any operator is diagonal in the basis formed by 

its own eigenvectors

4)
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The Energy Operator, or the Hamiltonian, in 1D
We need to write the following in a basis-independent way:

Answer:

     ˆE t t H t 

       
2 2

2* , ,
2

E t dx x t V x x t
m x

 




 
   

  



Here         is the Hamiltonian operator which can be written in terms of the 
momentum and position operators:

Ĥ

 
2ˆˆ ˆ

2
pH V x
m

 

1) †ˆ ˆH H

2)

Hamiltonian operator is Hermitian (or self-adjoint)

                 

           

     

2 2

2 2

2 2

2

ˆ ˆˆ ˆ ˆˆ ˆ1
2 2

ˆ ˆˆ ˆ          
2 2

          * , ,
2

p pH t t H t t V x t t V x t
m m

p pt dx x x V x t dx t x x V x t
m m

dx x t V x x t
m x

     

   

 

 

 





 
      

 
  

           
 

   
  





ECE 3030 – Summer 2009 – Cornell University

The Eigenstates and Eigenvalues of the Hamiltonian
3) Wouldn’t it be nice to also know ALL the eigenstates of the Hamiltonian operator:

Ĥ E 

 

     

2

2 2

2

ˆ

ˆ ˆ
2

2

x H E x

px V x E x
m

V x x E x
m x

 

 

 



  

 
    

  



Lets see this equation (or project this equation) in the position basis:

The time-independent 
Schrödinger equation!!

Suppose the eigenvectors and eigenvalues are:

     
2 2

22 j j jV x x E x
m x

 
 
   

  



In basis-independent notation:

ˆ
j j jH E 

Solutions of the time-independent Schrödinger equation are the eigenfunctions of 
the Hamiltonian in the position basis
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ˆ

ˆ
n n n

n n n

H E

x H E x

 

 



 

Recall how we had solved the Hamiltonian eigenvalue 
equation for an infinite potential well:

     
2 2

22 n n nV x x E x
m x

 
 

    
  



Solutions of the time-independent Schrödinger equation are the eigenfunctions of 
the Hamiltonian in the position basis

The Eigenstates and Eigenvalues of the Hamiltonian
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Schrödinger Equation Revisited: The Basis-Independent Form

       
22

2
, , ,

2
x t x t

i V x x t
t m x

 


 
  

 



We can write the above equation as:

     

     

   

   

2 2

2

2

2

ˆ ˆ
2
ˆ

ˆ

i x t V x x t
t m x

pi x t x V x t
t m

i x t x H t
t

i t H t
t

 

 

 

 

  
   

   


  




 



 










This is the more general basis-independent form of the Schrödinger equation!

   ˆi t H t
t
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4) The eigenstates of a Hermitian operator always form a compete set, and therefore:

1̂j j
j

  

5)
,

, ,

ˆ ˆ ˆ ˆ ˆ ˆ1 1

  

  

j j m m j m j m
j m j m

m j m j m m jm j m
j m j m

j j j
j

H H H H

E E

E

       

      

 

   
       

  

  

  Of course, any Hermitian operator is diagonal in 
the basis formed by its own eigenvectors

The Eigenstates and Eigenvalues of the Hamiltonian

Then in this chosen column vector 
Hilbert space, the Hamiltonian operator 
is the following infinite matrix:

1

1
0
0
.
.
.



 
 
 
 

  
 
 
 
 

2

0
1
0
.
.
.



 
 
 
 

  
 
 
 
 

3

0
0
1
0
.
.



 
 
 
 

  
 
 
 
 

1

2

3

0 0 0
0 0 0 . .
0 0 0 . .ˆ
0 0 0 . .

. . . .

. . . .

E
E

E
H

 
 
 
 

  
 
 
 
 

 


 
 

If we make the following mapping from the 
Hilbert space of the Hamiltonian eigenstates 
to the Hilbert space of column vectors:
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Operators in 1D

Position:

Potential Energy:

Momentum:

Kinetic Energy:

Total Energy:

x̂

p̂

 ˆV x

2ˆ
2
p
m

 
2ˆˆ ˆ

2
pH V x
m

 

1̂dx x x





1̂
2
dp p p





 ' 2 'p p p p 

 ' 'x x x x 

1̂j j
j

  
k j jk  

ˆ ' ' 'x x x x

ˆ ' ' 'p p p p

ˆ
j j jH E 
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When Momentum Eigenstates are also Energy Eigenstates
Total Energy:

 
2ˆˆ ˆ

2
pH V x
m

  1̂j j
j

  
k j jk  

ˆ
j j jH E 

What if the potential energy is zero (or constant U)  ?? 
2ˆˆ

2
pH U
m

 

Then momentum eigenstates are also energy eigenstates:

and Hamiltonian and the momentum operator have a common set of eigenstates!!

Note that in this case: 

2 2ˆˆ
2 2
p pH p U p U p
m m

   
         
   

ˆ ˆ, 0H p   
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Operators in 3D

Position (vector operator):

Potential Energy (scalar operator):

Momentum (vector operator):

Kinetic Energy (scalar operator):

Total Energy (scalar operator):

ˆ ˆ ˆx y zr xe ye ze  


ˆ ˆ ˆ ˆx x y y z zp p e p e p e  


 ˆV r


22 2ˆ ˆ ˆˆ ˆ.
2 2 2 2

yx zpp pp p
m m m m

  
 

 
ˆ ˆ. ˆˆ
2
p pH V r
m

 
  

3 1̂d r r r 
  

 3' 'r r r r 
   

 

3

3 1̂
2
d p p p



  

   3 3' 2 'p p p p  
   

1̂j j
j

  
k j jk  

ˆ
j j jH E 

ˆ ' ' 'r r r r
   

ˆ ' ' 'p p p p
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