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Lecture 7

A Math Primer for Quantum Physics

In this lecture you will learn:

• Vector spaces and Hilbert spaces
• Operators in Hilbert spaces
• Basis sets 
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Lessons from Electromagnetism: Basis and Representation

Consider an electric field vector:
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The same vector can be represented in 
different ways using different unit vector 
basis sets for its representation
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Lessons from Electromagnetism: Physics in Basis-
Independent Representation
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Gauss’ Law

Faraday’s Law

Ampere’s Law

James Clerk Maxwell
(1831-1879)

It is better to do physics in a representation-independent way!!
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The Quantum State

A quantum state (of any particle or system) is represented by the state 
vector               which is a vector in a Hilbert space               t
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Vector Spaces and Hilbert Spaces

Vectors (or kets) of dimension N are said to form a Hilbert space  or belong to a 
Hilbert space  if:

1) For any two vectors |𝐯⟩ ∈  and |𝐮⟩ ∈ , |𝐯⟩ + |𝐮⟩ = |𝐮⟩ + |𝐯⟩ ∈ 

2) |𝐯⟩ + 0 = 0 + |𝐯⟩ = |𝐯⟩

3) For any vector |𝐯⟩ ∈ , |𝐯⟩ ∈  ( is any complex number)

4) For any two vectors |𝐯⟩ ∈  and |𝐮⟩ ∈  , (|𝐯⟩ + |𝐮⟩) = |𝐯⟩+ |𝐮⟩)

Examples of vectors (or kets): column vectors 

a
v

b
 

  
 

a
b

v
c
d

 
 
 
 
 
 



ECE 3030 – Summer 2009 – Cornell University

Vector Spaces and Hilbert Spaces

Dual vectors (or bras) are defined as: 

a
v

b
 

  
 

 * *v a b

Vector (or ket) Dual vector (or bra)

Dual vectors (or bras) also form a Hilbert space of their own!

a
v

b
 

 
  

 
 * * * *v a b 

Vector (or ket) Dual vector (or bra)
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Inner Product and Norm
An inner product is defined between a vector (ket) and a dual vector (bra) as follows:

Given two vectors |𝐯⟩ and |𝐮⟩ belonging to a  :

a
v

b
 

  
 

c
u

d
 

  
 

The inner product between these two vectors is defined as:

   * * * * *
a

u v v u c d c a d b
b
 

    
 

The norm of a vector is defined as follows and is always non-negative and real:

 2 2 2* * 0
a

v v v a b a b
b
 

     
 

Two different vectors are said to be orthogonal if there inner product is zero
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Operators

An operator        acting in a Hilbert space has the property that it takes a vector in the 
Hilbert space to some other vector in the same Hilbert space

Ô

0 1ˆ
1 0

a b
u O v

b a
     

       
     

For a vector |𝐯⟩ ∈ , the action of the operator gives another vector |𝐮⟩ ∈ ,

Example: Operators are represented by matrices in the Hilbert space of column vectors

a
v

b
 

  
 

0 1ˆ
1 0

O  
  
 

ˆu O v
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Exterior Product

An exterior product between a vector (ket) and a dual vector (bra) is defined as follows:

The exterior product between these two vectors is an operator:

  * *
* *

* *
a ac ad

v u c d
b bc bd
   

    
   

Given two vectors |𝐯⟩ and |𝐮⟩:

a
v

b
 

  
 

c
u

d
 

  
 

To see why it is an operator, take a third vector |𝐰⟩ and act upon it with the exterior 
product:   

 v u w v u w u w v 

Another vector
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Adjoint Operators
Adjoint Operator: Suppose is an operator then the adjoint of     , indicated as       , 
is defined by the equation: 

Ô †Ô

 *†ˆ ˆv O u u O v

Suppose we define a new vector |𝒘⟩ as:

ˆw O u

Ô

†ˆw u O

This implies:

   ** †ˆ ˆv w v O u w v u O v  

Therefore the dual vector corresponding to |𝒘⟩ must obey:

ˆw O u
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Adjoint Operators

0ˆ
1 0

i a ib
w O u

b a
     

       
     

a
u

b
 

  
 

0ˆ
1 0

i
O  

  
 

Example:

    †0 1 ˆ* * * *
0

w ib a a b u O
i

 
     

Which gives:

† 0 1ˆ
0

O
i

 
   

This means that the adjoint operator is just the Hermitian conjugate matrix: 
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Self-Adjoint Operators or Hermitian Operators

An operator is called self-adjoint or Hermitian if it equals its adjoint:
†ˆ ˆO O

†0ˆ ˆ
0
i

O O
i

 
  
 

Example:
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Eigenvalues and Eigenvectors of Operators
Suppose is an operator then the eigenvectors and eigenvalues of this operator are 
defined by the equation:

Ô

Ô v v

Eigenvector
Eigenvalue

An operator can have a large number of eigenvectors and eigenvalues:

Example:

1 1

2 2

0ˆ
0

111
2

111
2

i
O

i

v
i

v
i





 
  
 

 
    

 
 

     

ˆ 1,2,3.....j j jO v v j 
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Eigenvectors and Eigenvalues: Hermitian Operators

1) A Hermitian operator (or a self-adjoint matrix) has real eigenvalues:

† *

† *

*

*

*

ˆ

ˆ

ˆ

ˆ

O v v

v O v

v O v v v

v O v v v

v v v v









 

 



 

 

 

 

 

Proof:
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Eigenvectors and Eigenvalues: Hermitian Operators
2) Different eigenvectors of a Hermitian operator are orthogonal

Proof:

1 1 1 2 2 2
ˆ ˆO v v O v v  

 
 
 

 

1 1 1

2 1 1 2 1

*†
1 2 1 2 1

*
1 2 1 2 1

*
2 1 2 1 2 1

2 2 1 1 2 1

2 1 2 1

ˆ

ˆ

ˆ

ˆ

0

O v v

v O v v v

v O v v v

v O v v v

v v v v

v v v v

v v









 

 

 



 

 

 

 

 

  

Suppose:

→ If 1 ≠ 2 then the 
eigenvectors are orthogonal

What we just showed is that 
eigenvectors corresponding to 
different eigenvalues are 
orthogonal

What if 1 = 2 ?

In that case, it can be shown that 
the two eigenvectors v1 and v2
can be chosen to be orthogonal       
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Eigenvectors and Eigenvalues: Hermitian Operators

Example:

1 1

2 2

0ˆ
0

111
2

111
2

i
O

i

v
i

v
i





 
  
 

 
    

 
 

     

2 1 0v v 
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Unity Operator

A unity operator, indicated by     , acting upon a vector gives back the same vector:

1̂ v v

1̂

Complete Basis Set
A set of vectors are said to span a Hilbert space and form a complete basis set if any 
arbitrary vector in the Hilbert space can be expressed as a linear combination (or as 
a superposition) of the vectors in this basis set

If the vectors                                          form a complete set then for any vector        : 1,2,3.....jv j N u

1

N
j j

j
u a v


 

The smallest number of vectors needed in a complete basis set to span a Hilbert 
space is called the dimension of the Hilbert space

1 0
0 1

a a
b b

     
     

     

Example:

Identity matrix
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Complete Basis Set

Example:

Consider the two-dimensional Hilbert space of column vectors and suppose:

1
1
0

v  
  
 

2
0
1

v  
  
 

You can convince yourself that any vector           can be written as: 
a
b
 
 
 

1 2
a

a v b v
b
 

  
 

Therefore, the dimensionality of the Hilbert space is 2
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Orthonormal Basis Set

If all the vectors in a basis set are orthogonal to each other and are normalized to 
unity, then they are said to constitute an orthonormal basis set

If the vectors                                           form an orthonormal basis set then: 1,2,3.....jv j N

1
1̂ unity  operator

N
j j

j
v v


 

Any arbitrary vector can be expanded as a linear superposition of the vectors in 
an orthonormal basis set:

1

1

1̂
N

j j
j

N
j j

j

j j
j

u u

v v u

v v u

v







 
  
 

 

 
j jv u 

Expansion coefficients

u

k j kjv v  and

j j
j

u v 

Multiply both sides by          :kv

k j k j
j

k j kj
j

k k

k k

v u v v

v u

v u
v u



 





 

  

 

 

Alternatively, we can write:
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Orthonormal Basis Set
Example:

Consider the two-dimensional Hilbert space of column vectors with the following 
orthonormal complete basis set:

1
1
0

v  
  
 

2
0
1

v  
  
 

2

1

1 0
1̂

0 1j j
j

v v


 
   

 

Then:



ECE 3030 – Summer 2009 – Cornell University

Eigenvectors and Eigenvalues: Hermitian Operators

Normalized (to unity) eigenvectors of any Hermitian operator form an orthonormal 
complete basis set

Example:

1 1

2 2

0ˆ
0

111
2

111
2

i
O

i

v
i

v
i





 
  
 

 
    

 
 

     

2

1

1 0
1̂

0 1j j
j

v v


 
   

 
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Matrix Representation of an Operator
Consider an operator       belonging to some abstract Hilbert space Ô

, ,

ˆ ˆ ˆˆ ˆ1 1

ˆ

j j m m
j m

j m j m jm j m
j m j m

O O v v O v v

v O v v v O v v

   
      

  

  

And suppose we have a complete basis set in that Hilbert space:

1̂ unity  operatorj j
j

v v  

We can write the operator as:

If two Hilbert spaces have the same dimensionality then one can be chosen to 
represent the other

An operator is completely 
defined by these numbers
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Can we represent an operator, acting in some abstract Hilbert space of dimension N, 
using NxN matrices and the Hilbert space of column vectors of size N? And, if so, 
how?

In this chosen column vector Hilbert 
space, the operator is the following 
NxN matrix:

1

1
0
0
.
.
0

v

 
 
 
 

  
 
 
 
 

2

0
1
0
.
.
0

v

 
 
 
 

  
 
 
 
 

3

0
0
1
0
.
0

v

 
 
 
 

  
 
 
 
 

 

   

 

1

1 1

1

. . . . . .

. . . . .

. . .ˆ

. . . . .

. . . . . .

. . . . . .

j m

jmj m j m

j m

O

O O O
O

O



 



 
 
 
 
 
 
 
 
 
 

Then make the mapping from the abstract 
Hilbert space  to the Hilbert space of 
column vectors:

Matrix Representation of an Operator

, ,

ˆ ˆ ˆˆ ˆ1 1

ˆ

j j m m
j m

j m j m jm j m
j m j m

O O v v O v v

v O v v v O v v

   
      

  

  
An operator is completely 
defined by these numbers

Start from:
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Operator Representation: Switching Basis
Consider the operator in the representation defined by the basis                        :

1 2
1 0 0ˆ
0 1 0

i
v v O

i
     

        
     

The operator has the following eigenvalues and eigenvectors:

1 1 2 2
1 11 11                  1

2 2
e e

i i
 

   
           

Suppose we want to switch the representation to the basis             and             :1e 2e
2 2

1 1

1 1 1 2 2 2
,

ˆ ˆ ˆˆ ˆ1 1

ˆ

j j m m
j m

j m j m
j m

O O e e O e e

e O e e e e e e e 

 

   
      

  

  

1
1 2

2

01 0 1 0ˆ
00 1 0 1

e e O



      

                

Operator is always diagonal in the representation of its eigenvectors!!

Therefore in the new representation:

1 2andv v
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Commutation Relations
Operator multiplication (like matrix multiplication) generally depends on the order of 
multiplication

The way to express this fact is using the commutator:

ˆ ˆ ˆ ˆ ˆ ˆ,A B AB BA    
ˆ ˆ ˆ ˆ ˆ ˆ,A B AB BA    

Example:

0 1 0ˆ ˆ
0 0 1
0 1 0 1 0 0 0 1ˆ ˆ, 2

0 0 1 0 1 0 1 0

i
A B

i
i i

A B i
i i

   
       

                                   
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Commutating Operators and Common Set of Eigenvectors
If two operators commute then they both can have the same eigenvectors

Proof:  
Suppose: ˆ ˆ ˆ ˆ ˆ ˆ, 0A B AB BA     

And suppose        has the eigenvectors given by:B̂ ˆ
j j jB v v

Then we need to show that           are also the eigenvectors of the 
operator     , i.e. 

jv
Â ˆ

j j jA v v

   

ˆ ˆ ˆ ˆ 0
ˆ ˆ ˆ ˆ 0
ˆ ˆ ˆ

ˆ ˆ ˆ

j j

j j j

j j j

AB BA

AB v BA v

A v BA v

B A v A v





 

  

 

 

The above can be true if                           and therefore          is also an eigenvector of      ˆ
j jA v v jv Â

(Proof is a bit more complicated if the operator       has a degenerate eigensubspace)B̂
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Hilbert Space of Square Integrable Functions with Zero BC

This space contains all functions f(x), defined over a space interval L,  that obey:

  2

0

L
dx f x  

Inner product between two different vectors is defined as:

   *

0

L
dx g x f x

Vector norm is defined as:

  2

0

L
dx f x

The dimension of this Hilbert space is infinite!

Any linear differential operator would be an example of an operator acting in this 
Hilbert space:  

           
2

2
ˆg x Of x a x b x c x f x

xx

  
    

  
Example:

and    as  0,0 x Lf x 
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Column Vector Representation of the Hilbert Space of Square 
Integrable Functions

x0 L

1 2 N

And we approximately represent every vector f(x) by its N values,                      , as a 
column vector in a N-dimensional Hilbert space:



1

2
.
.
.

N

f
f

f

f

 
 
 
 
 
 
 
 
 
 
 
 

1
2

N

f(x)

Suppose we divide the space of length L into N intervals of size  :

 j jf f x

x0 L

1 2 N



f(x)
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Column Vector Representation of the Hilbert Space of Square 
Integrable Functions

x0 L

1 2 N



If N is sufficiently large, one can 
represent any function over the 
interval 0 to L by these column 
vectors or kets in a N-dimensional 
Hilbert space

We will take the limit →0, or 
N→, in the end

1

2
.
.
.

N

f
f

f

f

 
 
 
 
 
 
 
 
 
 
 
 

1
2

N

1

2

2

.

.

.

g
g

g

g

 
 
 
 
 
 
 
 
 
 
 
 

f(x) g(x)
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Inner Product and Norm

x
0 L

1 2 N

Hilbert spaces require a well-defined inner-product



1

2
.
.
.

N

f
f

f

f

 
 
 
 
 
 
 
 
 
 
 
 

1
2

N

1

2

2

.

.

.

g
g

g

g

 
 
 
 
 
 
 
 
 
 
 
 

Inner Product:

f(x) g(x)

 
   

* * *
1 1 2 1

0

0

.......

*

N N

LLt

g f g f g f g f

dx g x f x

    

  

Vector Norm:

   

 

2

0

2

0

*

       

L

L

f f f dx f x f x

dx f x

  

  

Note this
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Complete Orthornormal Basis Set: Position Basis

x0 L

1 2 N



1

1
0
0
.1
.

0

x

 
 
 
 
 
 
 
 
 
 
 
 

2

0
1
0
.1
.

0

x

 
 
 
 
 
 
 
 
 
 
 
 

3

0
0
1
.1
.

0

x

 
 
 
 
 
 
 
 
 
 
 
 

0
0
0
.1
.

1

Nx

 
 
 
 
 
 
 
 
 
 
 
 

Consider the position basis:
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 

 

2

2

0
0
0

1 0 0 0......1.....0 0 0 1 1

0
0
0
0
0
0

1 0 0 1......0.....0 0 0 1

0
0
0

j j

kj
k j

x x

x x


 
 
 
 
 
 
    
 
 
 
 
 
  
 
 
 
 
 
 
   

 
 
 
 
 
  









Complete Orthornormal Basis Set: Position Basis

x0 L

1 2 N


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x
0 L

1 2 N



kj
k jx x






Orthogonality:

Completeness:

1
1̂

N
j j

j
x x


 

How to represent an vector        in this position basis?

1

2
.
.
.

N

f
f

f

f

 
 
 
 
 
 
 
 
 
 
 
 

f

1

1

1

1̂
N

j j
j

N
j j

j
N

j j
j

f f

x x f

x x f

f x









 
  
 

 

 

Complete Orthornormal Basis Set: Position Basis

Check!
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x
0 L

1 2 N



Complete Orthornormal Basis Set: Position Basis

 0 ' 'kj Lt
k jx x x x x x


   


Orthogonality:

Completeness: 0

1
ˆ ˆ1 1

N Lt
j j

j
x x dx x x


    

Now take the limit of  goes to 0 and N goes to ∞ to get:

 1̂f f dx x x f dx x x f dx f x x
 

      
 

Inner product:  0Lt
j jx f f x f f x  

Representation:

 0* *Lt
j jf x f f x f x  
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Differential Operator

x
0 L

1 2 N



Recall that an operator takes one vector into another vector in the same Hilbert space:

1
22

3
1 1

2

.

.0 1 2
1 2 0 1 2

21 2 0 1 2
.1 2ˆ 2.1 2
.1 2 0 1 2

2.1 2 0 1 2 .
1 2 0 .

.

j j

j j

j j

N

f
f ff

f
f f

O f
f f

f



 



 
 
    
               

             
   

            
   

      
 
  

 
 

 1 1 0ˆ ˆ
2

j j Lt
j

f f f x
x O f x O f

x
   

   
 

Differential operator!!Action of the operator Ô
viewed in the position basis
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Hermitian Differential Operator

x
0 L

1 2 N



Recall that an operator takes one vector into another vector in the same Hilbert space

1

2

3
1 1

.0 2

.1 2 0 2

.2 0 2
.2ˆ 2.2 .
.2 0 2 .
.2 0 2 .

2 0 .

j j

N

fi
fi i
fi i

f fi
O f ii

i i
i i

fi

 

      
           
                      
           
      
           




 
  

  
 

 


Hermitian differential 
operator!!

 1 1 0ˆ ˆ
2

j j Lt
j

f f f x
x O f x O f

i i x
   

   
 

 
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Hermitian Differential Operator

 *†ˆ ˆg O f f O g

   

       

   

     

0 0

00

0
* *†

0

ˆ ˆ *

*            *

*            

ˆ            *

L L

L L

L

L

g O f g dx x x O f dx g x f x
i x

g x
g x f x dx f x

i i x
g x

dx f x
i x

dx f x g x f O g
i x

          


  




 



       



 





 ˆ f x
x O f

i x






Show that this differential operator is Hermitian:

Integrate by parts

†ˆ ˆO O

Definition of a Hermitian operator

Proof:
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Another Complete Orthornormal Basis Set: Plane Wave Basis

x0 L

1 2 N



1 1 2ik xe k
L
  



2 2 4ik xe k
L
  



10 2 20ik xe k
L
  



0 0 0ik xe k 
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Another Complete Orthornormal Basis Set: Plane Wave Basis

x0 L

1 2 N



1 1

1 2

1 3

1

1
.
.

N

ik x

ik x

ik x

ik x

e

e

e

k

e

 
 
 
 
 
 

  
 
 
 
 
 
  

2 1

2 2

2 3

2

2
.
.

N

ik x

ik x

ik x

ik x

e

e

e

k

e

 
 
 
 
 
 

  
 
 
 
 
 
  

3 1

3 2

3 3

3

3
.
.

N

ik x

ik x

ik x

ik x

e

e

e

k

e

 
 
 
 
 
 

  
 
 
 
 
 
  

1

2

3

.

.

N

N

N

N N

ik x

ik x

ik x

N

ik x

e

e

e

k

e

 
 
 
 
 
 

  
 
 
 
 
 
  

2
nk n

L


 n m nmk k L n mik x
m nx k e

1 1̂j j
j

k k
L



 2,... 1,0,1,...... 2 1n N N    N different k values are possible => N different basis 
vectors
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Another Complete Orthornormal Basis Set: Plane Wave Basis

x
0 L

1 2 N



1

2

3

.

.

N

ikx

ikx

ikx

ikx

e

e

e

k

e

 
 
 
 
 
 

  
 
 
 
 
 
  

 0 ' 2 'Lt
n m nmk k L k k k k    Orthogonality:

Completeness: 01 ˆ ˆ1 1
2

Lt
j j

j

dkk k k k
L 




   

 

 

   

1̂
2 2 2

2

2
ikx

dk dk dkf f k k f k k f f k k

dkx f f k x k

dkf x f k e

  





  

  







 
      

 

  

  

Inner product: 0n jik x Lt ikx
j nx k e x k e  

Representation:

Fourier Transform!!
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Plane Wave Basis Completeness Relation: Proof

2
nk n

L




 2,... 1,0,1,...... 2 1n N N   

1
2

n nk k k
L


   

1 1̂

1 1̂

1 1̂2

1̂
2

1̂
2

j j
j

j j
j

j j
j

j j
j

k k
L

k k k
k L
k k k

L
L
k k k

dk k k














 




 

 
 
 


 

 

01 ˆ ˆ1 1
2

Lt
j j

j

dkk k k k
L 




   
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 ˆ f x
x O f

i x







Operator Representations

The action of operators look very different in different basis!

Consider this operator (discussed earlier):

We need to find how the action of the operator appears in the plane wave basis: 

 

 

 

ˆ ?
ˆ1̂

ˆ

ˆ ikx

ikx

k O f

k O f

k dx x x O f

f x
dx k x x O f dx e

i x

k dx e f x

k f k k k f




 



 










 


  



 

 





 

Integrate by parts
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How to Think About Things When Doing Quantum Physics

Consider a function f(x):

2
Wx  

2
Wx  

1

x

Consider Fourier Transform of f(x):

2k
W


 

1

k

     sin 2
2

ikx kW
f k dx e f x W

kW





 

W

The way you should think about this is to consider f a vector in a Hilbert space:

The vector        is the real deal. Everything else is a representation of       in different 
basis:

f
f f

 f k k f

 f x x f
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Delta Functions in 1D and 3D

A delta function in 1D has the following property:

     o odx f x x x f x



 

A delta function in 3D has the following property:

     3 3
o od r f r r r f r  

    

Integration of plane waves over all space (in 1D):

   ' 2 'i k k xdx e k k 
 


 

Integration of a plane waves over all space (in 3D):

     ' . 33 32 'i k k rd r e k k 


 
    

 
     

3
o

o o o

r r

x x y y z z



  

 

  

 

xxo

f(x)


