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Lecture 6

Schrödinger Equation: The Time-Independent Form

In this lecture you will learn:

• Schrödinger equation – the time-independent form
• Particle in an infinite potential well
• Quantum mechanical tunneling 
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Schrödinger Equation: What We Learned from the Previous Lecture

The Schrodinger equation is:

     
2 2

2
, ,

2
x t

i V x x t
t m x




  
   

   



The total energy operator

The mean value of the energy is:
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The total energy operator
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Energy Conservation in Newtonian Physics

Consider a particle of mass m with potential energy given by:  V x

 V x

The potential is not explicitly time dependent

The total energy E of the particle, given by, 
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is conserved, i.e.,
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Using Newton’s second law:

Total energy is time-independent
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Schrödinger Equation: Time-Independent Form (1D)

Many cases of practical interest involve problems in which the potential is not a 
function of time:
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In these cases, the TOTAL energy of the particle DOES NOT CHANGE with time and 
therefore we seek solutions of the form: 
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Normalization requirement gives:
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Schrödinger Equation: Time-Independent Form (1D)
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The mean value of the energy is:

Independent of time

The standard deviation in energy can be shown to be zero:

    22 0E t E t    So energy of the state is precise!



ECE 3030 – Summer 2009 – Cornell University

Schrödinger Equation: Time-Independent Form (1D)

Plug the solution form in the Schrödinger equation to get the time-independent form 
of the Schrödinger equation:
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 We need to solve 
this equation!
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The total energy operator
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Schrödinger Equation: Time-Independent Form (3D)
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Plug the solution form in the Schrödinger equation to get the time-independent form 
of the Schrödinger equation:
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We need to solve this equation!
The solutions will represent states with fixed precise energies

Many cases of practical interest involve problems in which the potential is not a 
function of time:

In these cases, the TOTAL energy of the particle DOES NOT CHANGE with time and 
therefore we seek solutions of the form: 
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The Free Particle in 1D
Consider a free particle in 1D

The potential energy V(x) is 0 everywhere:
x
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Plane wave solution
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The Infinite Potential Well Problem in 1D
Consider a particle placed inside a 1D box

Inside the box the potential energy V(x) is 0
Outside the box the potential energy V(x) is ∞

V=∞V=∞

x=0 x=L x
V=0

The infinite potential at the boundary walls (at x=0 and at x=L) ensure that the particle 
has no chance of ever being outside the box
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We need to figure out the quantum mechanical behavior of the confined particle:  
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The Time-Independent Schrodinger Equation: An Eigenvalue 
Equation
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Compared with a matrix eigenvalue equation:

Av v

Linear 
energy 
operator

Eigenfunction

Energy
Eigenvalue

Linear  
operator
(matrix)

Eigenvector
(Column vector)

Eigenvalue
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The Infinite Potential Well Problem in 1D
V=∞V=∞

x=0 x=L x
V=0

1) Inside the potential well we can use:
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 V(x)=0 inside

This is a second order differential equation → needs two boundary conditions!

2) Outside the potential well we must have:   0x 

Otherwise the average potential energy 
of the particle will be infinite:        *V x dx x V x x 




    

   0 0x x L    
So that the energy of 
the particle must not 
become infinite!
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The Infinite Potential Well Problem in 1D
V=∞V=∞

x=0 x=L x
V=0
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   0 0x x L    Solve: Subject to BCs

Try a solution:    sinx A kx 
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What about the Boundary Conditions?    0 0x x L    

 0x  is good     0 sin 0 1,2,3....x L kL k n n
L


       

k can only take values that are integral multiple of /L
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The Infinite Potential Well Problem in 1D

V=∞V=∞

x=0 x=L x

V=0
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So the corresponding solutions are:

  sinn x A n x
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And the corresponding energies are:
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n=1

n=2

n=3

 1,2,3....n 

 1,2,3....n 

Energy quantization!
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The Infinite Potential Well Problem in 1D

  sinn x A n x
L
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Proper normalization:

We must have:
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Choose the phase  to be 0:

 1,2,3....n 
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The Infinite Potential Well Problem in 1D

  sinn x A n x
L
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Orthogonality of the solutions:

Different solutions are orthogonal

   *
m n nmdx x x  






As you will see, this is a very general property of 
the solutions of the time-independent 
Schrödinger equation
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The Infinite Potential Well Problem in 1D

Since we had assumed the actual time-dependent wavefunction is:
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Solutions of the time-dependent Schrödinger equation for the infinite well would 
look like:
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 1,2,3....n    , 0 nx t x  If:
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The Infinite Potential Well Problem in 1D

V=∞V=∞

x=0 x=L x

Energy

V=∞V=∞

x=0 x=L x

n=1

n=2

n=3

Energy

V=0 V=0
E1

E2

E3
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Superposition in Quantum Mechanics

Schrödinger equation is a linear differential equation 

This means that a superposition (i.e a sum) of 
functions that satisfy the equation will also satisfy the 
equation

 
nEi t

n x e

  1,2,3....n 

Therefore, a superposition (i.e. a sum) of these functions, weighted by arbitrary 
complex coefficients, will also satisfy the time-dependent Schrodinger equation: 
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Complex coefficients

For the infinite potential well, since we have found that the following functions 
satisfy the Schrodinger equation: 
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Superposition in Quantum Mechanics
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Complex coefficients
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● This solution does not have a fixed precise energy. 
● It is a superposition of states each of which has a 
fixed precise energy. 

Normalization:
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Mean energy:

Superposition in Quantum Mechanics
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Complex coefficients
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● This solution does not have a fixed precise energy. 
● It is a superposition of states each of which has a 
fixed precise energy. 
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The Infinite Potential Well Problem in 1D: A Post Measurement 
Time Evolution Problem

V=∞V=∞

x=0 x=L x

Suppose a particle is known to be in a infinite potential well box

A time t=0, a measurement is made to locate the particle

The measurement is not very precise and post-measurement the particle is known 
to be somewhere inside the dashed region of thickness 

So immediately after the measurement its wavefunction can be taken to be roughly:

Measurement
x=x1 x=x2

  1 2
1

, 0
0 otherwise

x x x
x t 

    


2 1x x  

  2, 0 1dx x t



 

x1 x2 x

 , 0x t 

1
Wavefunction

collapse
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Question: What is the particle wavefunction for  time t>0   ??

We try a supersposition solution to match the initial condition:
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We need to find this coefficient only!

x1 x2 x

 , 0x t 

1


x1 x2 x

 , 0x t 

The Infinite Potential Well Problem in 1D: A Post Measurement 
Time Evolution Problem
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The Nanoscale FET: Classical Picture

Potential energy (transistor off) 

Potential energy (transistor on) 

Source

Source

Channel Drain

Channel Drain

V(x)

V(x)

No source-drain electron current

Source-drain electron current

In a FinFET, the potential energy 
profile seen by the electron can be 
changed by the application of a 
gate voltage

x



ECE 3030 – Summer 2009 – Cornell University

Barrier Tunneling in Quantum Physics
Consider the following problem:

x

V(x)=U

V(x)=0V(x)=0

x=0 x=L

A particle with KE equal to               is coming from the left towards a region where 
the potential is U over  a distance L

2 2mv

The KE of the particle is less than U: 
2

2
mvE U 

The particle doesn’t have enough KE to go through the potential hill, and will 
therefore bounce back. The potential hill is also called a potential barrier. 

Classical physics:

2

2
mv

Energy

Quantum physics:

There is a chance that the particle will go through, or tunnel through, the potential 
barrier and there is a chance that the particle with bounce back!
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Barrier Tunneling in Quantum Physics

x

V(x)=U

V(x)=0V(x)=0

x=0 x=L

Energy

We seek solutions of the form:
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Region I:
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Region II:
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Region III:
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All same E
E U

Energy = E



ECE 3030 – Summer 2009 – Cornell University

Barrier Tunneling in Quantum Physics: Solutions

x

V(x)=U

V(x)=0V(x)=0

x=0 x=L

Energy

Incoming wave

reflected wave Transmitted wave

Region I:    
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  ikx ikxx Ae rAe  

Superposition of two waves

Each wave has energy:

Incoming wave has momentum: 

Reflected wave has momentum:

2 2

2
kE U
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Reflection amplitude

k

k

Region III:    
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  ikxx tAe 
Wave has energy:

Transmitted wave has momentum:
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Transmission amplitude

k

ikxAe

ikxrAe

ikxtAe
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Barrier Tunneling in Quantum Physics: Classically Forbidden Region

x

V(x)=U

V(x)=0V(x)=0

x=0 x=L

Energy

Incoming wave

reflected wave Transmitted wave

Region II (this is a classically forbidden region):

  iqxx e 
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If one assumes a solution which is a plane wave:

Then one gets:
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q U E
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But we also know that the energy  
2 2

2
kE U
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Therefore:  
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2
q U E
m

  


q has to be imaginary!!

 2
2mq i U E i    


So the solution form is:   x xx Be Ce     Decaying and growing 
exponentials!

ikxrAe

ikxtAe
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Barrier Tunneling in Quantum Physics: Solutions

x

V(x)=U

V(x)=0V(x)=0

x=0 x=L

Energy

Incoming wave

reflected wave Transmitted wave

ikxAe

Region I:   ikx ikxx Ae rAe  

Region III:   ikxx tAe 

Region II (this is a classically forbidden region):   x xx Be Ce    

Now we need to stitch together these solutions at the boundaries

We have 4 unknown coefficients, which means we need four boundary conditions!

ikxrAe

ikxtAe
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Barrier Tunneling in Quantum Physics: Boundary Conditions

x

V(x)=U

V(x)=0V(x)=0

x=0 x=L

Energy

Incoming wave

reflected wave Transmitted wave

ikxAe

Boundary conditions:

The wavefunction and its derivative                  both must be continuous at all 
boundaries

 x  x
x




Ok – but why??

Recall that:    *p dx x x
i x
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A discontinuity in             somewhere would imply an infinite momentum

A discontinuity in              somewhere would imply an infinite energy

 x

 x
x




Both are 
unphysical

ikxrAe

ikxtAe
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Barrier Tunneling in Quantum Physics: Solutions

x

V(x)=U

V(x)=0V(x)=0

x=0 x=L

Energy

Incoming wave

reflected wave Transmitted wave

ikxAe

Region I:   ikx ikxx Ae rAe  

Region III:   ikxx tAe 

Region II (this is a classically forbidden region):   x xx Be Ce    

 
   

 

1
1
L L ikL

L L ikL

A r B C
ikA r B C

Be Ce tAe

Be Ce iktAe

 

 





 

 

  

   

 

  

Apply all the boundary conditions:

ikxrAe

ikxtAe
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Barrier Tunneling in Quantum Physics: Solutions

x

V(x)=U

V(x)=0V(x)=0

x=0 x=L

Energy

Incoming wave

reflected wave Transmitted wave

ikxAe

Region I:   ikx ikxx Ae rAe  

Region III:   ikxx tAe 

Region II (this is a classically forbidden region):   x xx Be Ce    

We get:

   

    

   

2 2

22

2 2

4

2 sinh

ikL

L L

L L

ik et
ik e ik e

ik L
r

ik e ik e

 

 



 

 

 



 

 


  




  

As L → 0 :
1
0

t
r



As L >> 1/ :

 2
4 ikL

Lik et e
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As expected!

Note that |r| → 1

Exponentially 
small, but non-zero 
transmission 
amplitude

ikxrAe

ikxtAe
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Barrier Tunneling in Quantum Physics: Solutions

 x

Energy 

As L >> 1/ :

 2
4 ikL

Lik et e
ik

ikr
ik








 




 

 Note that |r| → 1

Exponentially small, but non-zero transmission 
amplitude

 2
2m U E L

Lt e e
 

  



ECE 3030 – Summer 2009 – Cornell University

Barrier Tunneling in Quantum Physics: Probability Current

xx=0 x=L

Energy

Incoming wave

reflected wave Transmitted wave

ikxAe

ikxrAe

ikxtAe

Region I:   ikx ikxx Ae rAe  

          2 2 2, * ,
, * , ,
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r t r t k kI x t x t x t A A r

im x im x m m
 

 
 

   
 

 
   

Region II:   ikxx tAe 

          2 2, * ,
, * , ,

2 2
r t r t kI x t x t x t A t

im x im x m
 

 
 

  
 

 
  

Incoming 
prob. current

Reflected 
prob. current

Transmitted 
prob. current
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Barrier Tunneling in Quantum Physics: Probability Current

xx=0 x=L

Energy

Incoming wave

reflected wave Transmitted wave

ikxAe

ikxrAe

ikxtAe

Conservation of probability: Incoming probability current (coming towards the 
potential barrier) must equal the outgoing probability current (going away from the 
potential barrier)

This implies: 
Incoming probability current = reflected probability current 

+ transmitted probability current 

2 2 2 2 2

2 21

k k kA A r A t
m m m

r t
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Energy of the incoming electron

U U0 0

Barrier Tunneling in Quantum Physics: Probability Current

xx=0 x=L

Energy

Incoming wave

reflected wave Transmitted wave

ikxAe

ikxrAe

ikxtAe
V(x)=U

V(x)=0V(x)=0

Energy of the incoming electron


