Lecture 6

Schrodinger Equation: The Time-Independent Form

In this lecture you will learn:

» Schrodinger equation — the time-independent form
 Particle in an infinite potential well
e Quantum mechanical tunneling

SUBSTRATE




Schrodinger Equation: What We Learned from the Previous Lecture

The mean value of the energy is:

n? 02
2m x>

(E)(t) = _Oidxy/*(x,t)[— +v(x)}u(x,t)

The total energy operator

The Schrodinger equation is:

. oy (x,t) _ [_
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The total energy operator




Energy Conservation in Newtonian Physics

V(x)

Consider a particle of mass m with potential energy given by: V(x)

The potential is not explicitly time dependent

The total energy E of the particle, given by,

Is conserved, i.e., _
- Using Newton’s second law:

2 2
£=m(dxj d“x +dV(X)(dx)=o o d7x =_dV(x)
dt dt )| dt? dx \ dt a2 |- dx

Total energy is time-independent




Schrodinger Equation: Time-Independent Form (1D)

Many cases of practical interest involve problems in which the potential is not a
function of time:

i ow (x,t)
ot

In these cases, the TOTAL energy of the particle DOES NOT CHANGE with time and
therefore we seek solutions of the form: E

v(x,t)=g(x)e "

< Energy E

Normalization requirement gives:

idxy/*(x,t)y/(x,t) _ idx¢*(x)¢(x) _1




Schrodinger Equation: Time-Independent Form (1D)

i” oy (x,t) _
ot

v(x,t)=g(x)e "

The mean value of the energy is:

E)0= T axw(x t)[
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+ V(x)zly/(x,t)

_ idxw*(x,t)-iha}w(x,t)

- aew () P00 T g ()

—00

=E [ dx¢*(x)@#(x)=E — Independent of time

—00
The standard deviation in energy can be shown to be zero:

<E2>(t) - [<E>(t):|2 =0 So energy of the state is precise!




Schrodinger Equation: Time-Independent Form (1D)

Ry (xt) _ # 0% (x,t)
ot B 2m 6)(2

+V (x)y(x,t)

v(x,t)=g(x)e

Plug the solution form in the Schrodinger equation to get the time-independent form
of the Schrodinger equation:

2 A2 We need to solve
I (X) |y (x)g(x)=Ep(x) | this equationt

2m  ox?

) The total energy operator




Schrodinger Equation: Time-Independent Form (3D)

Many cases of practical interest involve problems in which the potential is not a
function of time:

V2 (F,t)+V(F)y (F.t)

In these cases, the TOTAL energy of the particle DOES NOT CHANGE with time and
therefore we seek solutions of the form: E

v(F.t)=g(F)e "

t - Energy E

Plug the solution form in the Schrodinger equation to get the time-independent form
of the Schrodinger equation:

We need to solve this equation!
The solutions will represent states with fixed precise energies




The Free Particle in 1D

Consider a free particle in 1D

The potential energy V(x) is 0 everywhere:

n? 8%y (x,t)
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-iE¢

y(x,t)=¢g(x)e

0

V(x)y(x,t)

~ 72 62¢(x)
2m x>

- E4(x)

Assume: ¢(x)= Ae'™ > Plane wave solution
And:
2m  ox?
N 2 k? Aef* _ Epeikx
2m
n2k?
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- E4(x)

= E

L it
> y/(x,t)=Ae'kxe' =



The Infinite Potential Well Problem in 1D

Consider a particle placed inside a 1D box

Inside the box the potential energy V(x) is 0
Outside the box the potential energy V(x) is «~

V= % t V==

>
x=0 x=L X

The infinite potential at the boundary walls (at x=0 and at x=L) ensure that the particle
has no chance of ever being outside the box

We need to figure out the quantum mechanical behavior of the confined particle:
E

v(x,t)=g(x)e "

~ 72 62¢(x)
2m  ox?

+V(x)¢(x)=Egp(x)




The Time-Independent Schrodinger Equation: An Eigenvalue
Equation

—iEt Energy
y/(x,t)=¢(x)e h Eigenvalue

" 2m px?

\ | J \ J
T |
Einear Eigenfunction
energy 'ge

operator

[ & +v(x>]¢(x>=E¢(x>

Compared with a matrix eigenvalue equation:

Eigenvalue

Toos
N

operator Eigenvector
(matrix) (Column vector)




The Infinite Potential Well Problem in 1D

V= % 4 V=

x=0

1) Inside the potential well we can use:

2 62¢(x)

~o .~ =E¢(x) < V(x)=0 inside
) ¢

2) Outside the potential well we must have: ¢(x)=0
Otherwise the average potential energy 00
of the particle will be infinite: ‘[ (V(x))= [ dx ¢*(x)[V(x)]g(x)
—00
This is a second order differential equation — needs two boundary conditions!

So that the energy of
#(x=0)=¢(x=L)=0 the particle must not
become infinite!




The Infinite Potential Well Problem in 1D

V= % 4 V=00

x=0

B h2 52¢(X)

Solve:
2m 6)(2

=E¢(X) SubjecttoBCs= ¢(X=0)=¢(X=L)=0

Try a solution: ¢(x) = Asin(kx)

2 A2 2,2 2,2
_zhm aa"jx(zx) =E¢(x)=>%Asin(kx)=EAsin(kx)=> E = thl;

What about the Boundary Conditions? ¢(x=0)=¢(x=L)=0

#(x =0) is good $(x=L)=0=sin(kL)=0= k = n% {n=1,2,3...

k can only take values that are integral multiple of n/L




The Infinite Potential Well Problem in 1D

A

V=

k=n—
L

So the corresponding solutions are:

dn(X) = Asin(n%x)

And the corresponding energies are: E

Energy quantization!




The Infinite Potential Well Problem in 1D

V=0

b (X) = Asin(n%XJ {n=1,2,3.... -

2 2
E,= h—(nfj
2m\ L

Proper normalization:

We must have: Choose the phase ¢ to be 0:

= Of dx|A|2 sin’ (n%x) =1

—00

:|A|2=%

=>|A|=\/%e"¢




The Infinite Potential Well Problem in 1D

V=0

& (X) = Asin(n%x) =

2 2

E,= h—(nf)
2m\ L

Orthogonality of the solutions:

Different solutions are orthogonal

_Of dx ¢;1 (X)¢n (X) = Onm

As you will see, this is a very general property of
the solutions of the time-independent
Schrodinger equation




The Infinite Potential Well Problem in 1D

V=
n=3

Since we had assumed the actual time-dependent wavefunction is:
—iEt
v(xt)=g(x)e 7

Solutions of the time-dependent Schrodinger equation for the infinite well would
look like:

= w(x,8) = gy (x)e




The Infinite Potential WeIIEI Problem in 1D




Superposition in Quantum Mechanics

V=0
n=3

Schrodinger equation is a linear differential equation

This means that a superposition (i.e a sum) of
functions that satisfy the equation will also satisfy the

equation

For the infinite potential well, since we have found that the following functions
satisfy the Schrodinger equation:

Therefore, a superposition (i.e. a sum) of these functions, weighted by arbitrary
complex coefficients, will also satisfy the time-dependent Schrodinger equation:

o

E
_'_nt X, 2 2 X,
v(x.t)=3 a, d,(x)e 7 w2Vl VOO y (e (x,t)
n

I

Complex coefficients




Superposition in Quantum Mechanics |,
V=
En n=3

v(x,t)=3 a, ¢, (x)e "

I

Complex coefficients

e This solution does not have a fixed precise energy.
e It is a superposition of states each of which has a

fixed precise energy.

Normalization:

[ dxy *(x,t)p (x,t) =1

En
h

=y 3 a:,am T dx¢;(x)e

2
=2 ‘an‘ =1
n




Superposition in Quantum Mechanics |,
V=
_'E_n n=3

w(x,t) =%‘, ap #n(x)e

I

Complex coefficients

e This solution does not have a fixed precise energy.
e It is a superposition of states each of which has a
fixed precise energy.

Mean energy:

0= Taxw () - 20 2w (x) ()

j dxy *(x, t)l:lh ] (x,t) = Z Z anam j dx¢,,(x)e W Edm(x)e "

=2 |"'n|2 E,
n




The Infinite Potential Well Problem in 1D: A Post Measurement

Time Evolution Problem

Suppose a particle is known to be in a infinite potential well box
A v A

V= i i V=

1
| . JA
Ai= Xp T X4 Wavefunction w(x,t= O)H

L collapse
Z o > X, X,

. X
Measurement | ~ ™~
XX, | X=X,

— -
x=0 x=L X

A time =0, a measurement is made to locate the particle

The measurement is not very precise and post-measurement the particle is known
to be somewhere inside the dashed region of thickness A

So immediately after the measurement its wavefunction can be taken to be roughly:

X1SXSX2

(1
y/(x,t=0+)=4ﬁ
| 0

— _T dx |y (x,t = 0)‘2 =1

otherwise




The Infinite Potential Well Problem in 1D: A Post Measurement

Time Evolution Problem
Question: What is the particle wavefunction for time >0 ?7?

We try a supersposition solution to match the initial condition:
En

v(x,8)=3 a, g (x)e "

This lmplles We need to find this coefficient only!

w(x,t=0) =% ap n(x)

Multiply both sides by ¢, (x) and integrate:

_T dx gy (x)y (Xt = 0) = > a _T dx gy (x) (%)




x The Nanoscale FET: Classical Picture

SUBSTRATE

BODY:

\

Source Channel -
Drain

Potential energy (transistor off)

No source-drain electron current

In a FinFET, the potential energy
profile seen by the electron can be
changed by the application of a
gate voltage

Vi
Source \I )

Channel
Drain

Potential energy (transistor on)

Source-drain electron current




Barrier Tunneling in Quantum Physics
Energy

V(x)=U

Consider the following problem:

mV2

2

I V(x)=0

x=0 x=L
Classical physics:
A particle with KE equal to mv2/2 is coming from the left towards a region where

the potential is U over a distance L

mv2

The KE of the particle is less than U: E = > <U

The particle doesn’t have enough KE to go through the potential hill, and will
therefore bounce back. The potential hill is also called a potential barrier.

Quantum physics:

There is a chance that the particle will go through, or tunnel through, the potential
barrier and there is a chance that the particle with bounce back!




Barrier Tunneling in Quantum Physics

We seek solutions of the form:

E

w(x,t)= ¢(X)e_igt I

Region I: Region II: Region llI:

n? %4 (x) 12 0%¢(x)

_ n? 92
Tom ax? ) “om a2 TUP(X)=Ed(x) | - $(x)

2m  px?

- E¢(x)




Barrier Tunneling in Quantum Physics: Solutions
Energy

Aeikx V(x)=U

ik.
Incoming wave tAe"
> >

reflected wave Transmitted wave

<
V(x)=0 rAe~kx V(x)=0

x=0 x=L

Region I:
2m  pHx?

= E¢(X ) [ Superposition of two waves
2k2
_ _ Each wave has energy: E = <U
¢(x)=Ae'kx+rAe_'kx I 2m
T Incoming wave has momentum: +7k

Reflection amplitude

| Reflected wave has momentum: —zk
n? 8%¢(x)

Region lll:
2m 6)(2

= E¢(x)
2.2
_ Wave has energy: E = "k <U
#(x) = tAe™ 2m
T Transmitted wave has momentum: +7k

==

Transmission amplitude




Barrier Tunneling in Quantum Physics: Classically Forbidden Region
Energy

Aeikx V(x)=U

. ik
Incoming wave tAe"™
> >
Transmitted wave

<
V(X)= 0 rAe- ikx reflected wave V(X)=0

»
|

x=0 x=L )¢

2 2000 | ) = Eg(x)

2m 5)(2
+igx

Region Il (this is a classically forbidden region):

If one assumes a solution which is a plane wave: ¢(x)x<e
12q7

Then one gets:
2m

+U=E
n2k?
But we also know that the energy F — 5 <U
m
2.2

h
Therefore: 2;’1 = —(U — E) q has to be imaginary!!

. [2m .
q=il h—Z(U—E)=iI}’

0 the solution form is: ¢(x) o Be VX + Ce™"X Decaying and growing
exponentials!




Barrier Tunneling in Quantum Physics: Solutions
Energy

Aeikx V(x)=U

ik.
Incoming wave tAe"™

<
V( X)_O r Ae_ikx reflected wave

) >
Transmitted wave

x=0 x=L
Regionl:  ¢(x)= Ae'™* 1 rpAe~TKx
Region Il (this is a classically forbidden region): ¢(X) o« Be "X 4+ Ce*t"X
Region lll:  ¢(x) = tAe™™

Now we need to stitch together these solutions at the boundaries

We have 4 unknown coefficients, which means we need four boundary conditions!




Barrier Tunneling in Quantum Physics: Boundary Conditions
Energy
Aeikx V(X)=U

i ik
Incoming wave tAe'"™
- >
reflected wave Transmitted wave

<
V(x)=0 rAe~kx

x=0 x=L

Boundary conditions:

The wavefunction ¢(x) and its derivative 0¢(x) both must be continuous at all
boundaries 24

Ok — but why??

Recall that:  (p)= of dx ¢*(x)-

)= T o 47(0)

A discontinuity in ¢(X) somewhere would imply an infinite momentum
| Both are

A discontinuity in 04 (x) somewhere would imply an infinite energy unphysicg
(0).4




Barrier Tunneling in Quantum Physics: Solutions
Energy
Aeikx V(x)=U

. ik
Incoming wave tAe"™
> >
Transmitted wave

reflected wave

<
V(x)=0 rAekx

x=0 x=L
Regionl:  ¢(x)= Ae'* 1 rpe "k

Region Il (this is a classically forbidden region): ¢(x) o Be™"* +Ce*"™

Region lil: ¢(x) = tAe'™*

Apply all the boundary conditions:

A(1+r)=B+C
ikA(1-r)=—-y(B-C)
Be 'L L ce™7t = tae*t

—;/(Be_”" _ Ce+7") = iktAe'L




Barrier Tunneling in Quantum Physics: Solutions
Energy

Aeikx V(x)=U

ik.
Incoming wave tAe"™
> >

Transmitted wave

reflected wave

<
V(x)=0 rAe"kx

x=0 x=L
Regionl:  ¢(x)= Ae'™* | rpae~TKx
Region Il (this is a classically forbidden region): ¢(X) o Be "X + Cet’X
Region lII: ¢(x) = tAe'**
AsL — 0:

t—>1
. —ikL As expected!
4ikye r—0

) (7 + ik)2 9_71' — (}/ — ik)2 e+7"' As L>>1ly: Exponentially
2 - Aikye kL small, but non-zero
Z(yz—(ik) )sinh(yL) LY 4 e 7L
r f—

transmission
C(y+ik) et —(y—ik)? et

We get:

t

amplitude

Note that |r| — 1




Barrier Tunneling in Quantum Physics: Solutions
4 Energy

(%)
\

Exponentially small, but non-zero transmission
amplitude

Note that |r] — 1




Barrier Tunneling in Quantum Physics: Probability Current
Energy

AeikX
k.
Incoming wave tAe'"™
< > >
reflected wave Transmitted wave

rAe—ikX

x=0 x=L
Regionl:  ¢(x)= Ae'f™* | rAe— Tk

n 6y/(r t) (X t) h o oy* ( zhk

2im 2im 1.4

) k|

\ l \
[

Incoming Reflected
prob. current  Prob. current

1(x,t) =y *(x,t)

Region ll:  ¢(x) = tAe ™

2 hk
Itl

1(x,t) =y " (x,t) - a# W . r =|A

Transmitted
prob. current




Barrier Tunneling in Quantum Physics: Probability Current
Energy

AeikX

Incoming wave tAe'kx

< > >
reflected wave Transmitted wave

rAe—ikX

x=0 x=L

Conservation of probability: Incoming probability current (coming towards the
potential barrier) must equal the outgoing probability current (going away from the
potential barrier)

This implies:

Incoming probability current = reflected probability current
+ transmitted probability current

zhk 2hk|| | |2hk|

A" —=|A AP =t

= 1= |r|2 + |t




Barrier Tunneling in Quantum Physics: Probability Current
Energy
Aeikx V(X)=U

ik
Incoming wave tAe'™™*
- >
reflected wave Transmitted wave

<
V(x)=0 rAe~kx

x=0 x=L

U

Energy of the incoming electron Energy of the incoming electron




