
ECE 3030 – Summer 2009 – Cornell University

Lecture 27

Periodic Potentials: Electrons in Crystals

In this lecture you will learn:

• Atomic potentials
• Electrons in periodic potentials
• Energy bands in solids

Silicon crystal
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Electron Potential Energy in an Atom
The potential energy of an electron in a single isolated atom looks like:
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If you solve the Schrodinger equation for the potential shown, you will obtain 
the atomic wavefunctions and the atomic energy levels
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Electron Potential Energy in a Crystal of Atoms
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1) The core (innermost) atomic energy eigenfunctions and energy levels remain 
unchanged

2) The higher energy atomic levels and corresponding wavefunctions get drastically 
modified:

- The wavefunctions are not localized at any particular atom
- The energy levels are organized in bands of energy that are separated by 
energy gaps or bandgaps

Bandgaps
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Potential is periodic:
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Electron Wavefunctions in Periodic Potentials
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Probability of finding the electron is 
also periodic
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A 1D Periodic Potential: Fourier Series 
Consider the 1D crystal:
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Potential is periodic:
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Consequently, the Fourier series expansion of V(x) will be:
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Potential has wavevectors that are 
all integer multiples of  2/a

since V(x) is real
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Solving the Schrodinger Equation with a 1D Periodic Potential
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We will suppose that the periodic atomic potential V(x) is small, and that the electrons 
are essentially free, and we will treat the potential as a perturbation and see how it 
effects the free electrons.

Free-Electron Approach:
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Solving Schrodinger Equation: Free-Electron Approach
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Approximation: 

Keep only the fundamental harmonic of the periodic potential:
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If V1=V-1 is real
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Solving Schrodinger Equation: Free-Electron Approach
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Approximation: 

Keep only the fundamental 
harmonic of the periodic potential
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The original Hamiltonian is just the standard free-space Hamiltonian:
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Electron in a 1D Periodic Potential: Original Hamiltonian
The original free-space Hamiltonian          has the standard plane wave eigenstates:ˆoH
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The eigenstates are 
normalized in a crystal 
of length L

The energy dispersion relation of 
free electrons is parabolic, as 
shown in the figure

k

Energy

The energy dispersion relation of 
free electrons is parabolic, as 
shown in the figure above
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Electron in a 1D Periodic Potential: Free-Electron Approach
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Now the Hamiltonian is:

The periodic potential matrix element is non-zero in only special cases:
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Perturbation Theory: A Review

In the presence of a perturbing potential, the new eigenstates and energies are 
given by:

Consider a Hamiltonian with eigenstates and energies given by:

nnno eH  ˆ

  nnno EVH   ˆˆ

If the perturbation is small, then the new eigenstates are slightly perturbed from the 
original eigenstates and, to first order in the perturbation, can be written as:
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Thus, the perturbation “mixes” the eigenstates of the original Hamiltonian to 
generate the eigensatate of the new Hamiltonian. 

Note: The effect of the perturbation is not small, and the perturbation theory breaks 
down, if for:

0ˆ nm V 
we have:

0 mn ee



ECE 3030 – Summer 2009 – Cornell University

Electron in a 1D Periodic Potential: Perturbation Theory

So we try perturbation theory and write:
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And write the new eigenstate to first order in the periodic potential as:
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And use:
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Electron in a 1D Periodic Potential: Perturbation Theory
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And write the new eigenfunction as:
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Solutions obtained !

Now lets go home ……………

Wait ………..

Energy
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Electron in a 1D Periodic Potential: Perturbation Theory
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The new wavefunction becomes:
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A periodic function:    k ku x a u x 
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Electron in a 1D Periodic Potential: Perturbation Theory
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What if k = /a ? Energy

The denominator blows up !!
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Electron in a 1D Periodic Potential: Perturbation Theory
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What if k = -/a ?
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The denominator blows up !!
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Electron in a 1D Periodic Potential: Bragg Scattering
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The scattering of the electron wave from each successive atom in the periodic chain 
would add up constructively in phase in the backward direction if the extra phase 
accumulated by the wave in the round trip from one atom to the next one is a multiple 
of 2: 

Bragg condition!
When this is satisfied, a forward 
moving electron is strongly 
reflected in the backward direction

ikxe

Similarly, a backward moving electron is strongly Bragg scattered in the forward 
direction when 
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Electron in a 1D Periodic Potential: Perturbation Theory

Suppose k is near /a :
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Way forward: abandon standard 
perturbation theory and use 
finite basis expansion !



ECE 3030 – Summer 2009 – Cornell University

1 2'
'

1 2'

ˆ
k k

a
k k

k k
a

V

V
V







 



 

 


 



Electron in a 1D Periodic Potential: Finite Basis Expansion
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Now the Hamiltonian is:

The periodic potential matrix element is non-zero in only special cases:
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Electron in a 1D Periodic Potential: Finite Basis Expansion

Suppose k is near /a :

2k k k aa b     

Plug this into the Schrodinger equation:

To get the matrix equation:
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The new energies are:

Keep the most important strongly coupled 
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Electron in a 1D Periodic Potential: Finite Basis Expansion

Suppose k is near -/a :

2k k k ac d     

Plug this into the Schrodinger equation:

To get the matrix equation:
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Electron in a 1D Periodic Potential: Finite Basis Expansion
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The obtained solutions E(k) are plotted on top of 
the free-electron energy dispersion e(k) so that 
you can see the difference. 

An energy gap opens up!!
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Electron in a 1D Periodic Potential: Origin of the BandgapsElectron in a 1D Periodic Potential: Origin of the Bandgaps
We have:

 

2 cos
1

2 2 sin

i x i x
a ak a

x
L a

x e e
L

i x
L a

 











  
          

        Note that (for V1 real):

 
2 2

1 1

1
2        2 cos

i x i x
a aV x V e V e

V x
a

 




 

   
   xV

a

x

 2
xa

• The solutions are 
standing waves (as a result 
of forward and backward 
Bragg scattering)

• The higher energy 
solution has larger 
probability density in the 
region of higher potential

Lower energy 
solution

Higher energy 
solution
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Electron in a 1D Periodic Potential: Summary

Summary of Findings:
• For a perturbative periodic potential with the following Fourier Series representation,
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the plane wave eigenfunctions of the free electron 
with wavevector k get coupled with the wavevectors
(k + 2/a) and (k - 2/a) as a result of the fact that the 
potential had wavevectors 2/a and -2/a in its 
Fourier series

• If the electron wavevector k is such that e(k) and 
e(k-2/a) have the same energy, or if e(k) and 
e(k+2/a) have the same energy, then a bandgap of 
magnitude 2|V1| will open up in the free electron 
dispersion for the wavevector value k

12 V
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Electron in a 1D Periodic Potential: More General Case
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Now suppose the periodic 
potential looks like:
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Electron in a 1D Periodic Potential: Bloch’s Theorem
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Note that:
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This implies that:
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Electron in a 1D Periodic Potential: Bloch’s Theorem
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Electron in a 1D Periodic Potential: Bloch’s Theorem
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Let:  a ka  k is the constant of proportionality

Then:    
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A periodic functionBloch function

Bloch’s theorem
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Electron in a 1D Periodic Potential: Bloch’s Theorem
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     Since summation over m includes all 

integers, k can be restricted to satisfy:

The above convention is used almost 
always!
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Any periodic function can be expanded in a Fourier series:
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Electron in a 1D Periodic Potential: Folded Bands and FBZ

Since k has been restricted to the range                                 , the energy dispersion 
outside  this range is folded into this range  via translations by vectors that are 
multiples of 2/a

The dispersion thus obtained is split into energy bands 

The interval                                is called the First Brillouin Zone (FBZ)
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