Lecture 27

Periodic Potentials: Electrons in Crystals

Silicon crystal

In this lecture you will learn: NONS _

e Atomic potentials
* Electrons in periodic potentials
* Energy bands in solids
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Electron Potential Energy in an Atom

The potential energy of an electron in a single isolated atom looks like:

V(F)z—

Ze?

Coulomb potential of an
isolated atom

hz VZ B ~ . .
ay. V/(r)+V(r)y/(r)—EW(r)

If you solve the Schrodinger equation for the potential shown, you will obtain
the atomic wavefunctions and the atomic energy levels




Electron Potential Energy in a Crystal of Atoms
Potential is periodic: v(f + §)= v(r)
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1) The core (innermost) atomic energy eigenfunctions and energy levels remain
unchanged

»l

2) The higher energy atomic levels and corresponding wavefunctions get drastically
modified:
- The wavefunctions are not localized at any particular atom
- The energy levels are organized in bands of energy that are separated by
energy gaps or bandgaps




Electron Wavefunctions in Periodic Potentials
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Vacuum level 0—
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Note that:

Probability of finding the electron is
also periodic




A 1D Periodic Potential: Fourier Series

Consider the 1D crystal:

Potential is periodic:

V(x+na)=V(x) {n=0,11,12,

Consequently, the Fourier series expansion of V(x) will be:

.2Tm

V(X)=SV,e @

Potential has wavevectors that are
all integer multiples of 2n/a




Solving the Schrodinger Equation with a 1D Periodic Potential
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Free-Electron Approach:

We will suppose that the periodic atomic potential V(x) is small, and that the electrons
are essentially free, and we will treat the potential as a perturbation and see how it

effects the free electrons.




Solving Schrodinger Equation: Free-Electron Approach
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Approximation:

Keep only the fundamental harmonic of the periodic potential:

27:

V(x)=Vse e v =2V1cos(2§x)

If V,=V, is real
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Solving Schrodinger Equation: Free-Electron Approach
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Approximation:

Keep only the fundamental 127 «
harmonic of the periodic potential V(X) V1e a

n? oy (x), [

2m  px?

|:I:Io+\7:||y/>= E|w>

The original Hamiltonian is just the standard free-space Hamiltonian:




Electron in a 1D Periodic Potential: Original Hamiltonian

The original free-space Hamiltonian H

o has the standard plane wave eigenstates:

2 K2
2m

Energy e(k) =

|¢k>

The eigenstates are
normalized in a crystal
of length L
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Electron in a 1D Periodic Potential: Free-Electron Approach

Now the Hamiltonian is:
H=H,+V
= H =1H1

e(K)|di) (i |+ (B |V ) i) (e

The periodic potential matrix element is non-zero in only special cases:

(B |V |de) = Idx\/7 _'kxv(x)\/ilkx

L/2 o i<” x
=% I{/dee_'kx|:\/1e i

V., ifk-k'=+2F

otherwise




Perturbation Theory: A Review

Consider a Hamiltonian with eigenstates and energies given by:

I:Io‘¢n> = en‘¢n>

In the presence of a perturbing potential, the new eigenstates and energies are
given by:

(Flo +‘7)"//n> = En"//n>

If the perturbation is small, then the new eigenstates are slightly perturbed from the
original eigenstates and, to first order in the perturbation, can be written as:

"/’n> ~ ‘¢n>+ 3 <¢m “7‘¢n>

m+#n en - em

'¢m ) +higher order terms

Thus, the perturbation “mixes” the eigenstates of the original Hamiltonian to
generate the eigensatate of the new Hamiltonian.

Note: The effect of the perturbation is not small, and the perturbation theory breaks

down, if for: .
(@m|V|gn) =0

we have:



Electron in a 1D Periodic Potential: Perturbation Theory

So we try perturbation theory and write:

(I-AIo +\7) W)=

New energy  New eigenstate

And write the new eigenstate to first order in the periodic potential as:

(P M ¢k>

d')+higher order terms

Vi) =)+

And use:




Electron in a 1D Periodic Potential: Perturbation Theory

And write the new eigenfunction as:

(1 V)
e(k)-e(k')

d' )+ higher order terms

Vi) = | P )+ 2
P

v e
(;(+2”/a)‘¢k+27r/a>

V_
|y/k>z|¢k>+ e(k)—e(I:—Zﬂ'/a)‘¢k_2ﬂ/a>+ e(k)_e

+ higher order terms

Solutions obtained !




Electron in a 1D Periodic Potential: Perturbation Theory

V_ V.
Vi)~ 9+ e(k)—e(I:—Zzz/a)‘¢k_2”/a>+e(k)—e(;(+27r/a)‘¢k+2”/a>}

+ higher order terms

The new wavefunction becomes:

vic (x) = (x|p)

. (, 2
v_1 1 el( s v1 1 el(k+
e(k)-e(k-2x/a) /L e(k)-e(k+2x/a) /L
| + higher order terms

.2
v_1 1 —l—”X \/1

1
a
e(k)—e(k-2z/a)JL . e(k)-e(k+2z/a) L
| + higher order terms

a

-1 e"uy (x)

\/Z\_'_l

A periodic function: Uy (x+a)=u(x)




Electron in a 1D Periodic Potential: Perturbation Theory

V_ V.
V)= |¢k>+[e(k)_e(::_zﬂ/a) e2mia ) S e (ks 20a) ‘¢k+2”/a>]

+ higher order terms

What if k = n/a ?

The denominator blows up !!




Electron in a 1D Periodic Potential: Perturbation Theory

V_ V.
V)= |¢k>+[e(k)_e(::_zﬂ/a) e2mia ) Sk e (ks 20a) ‘¢k+2”/a>]

+ higher order terms

Energy

What if k = -n/a ?

The denominator blows up !!




Electron in a 1D Periodic Potential: Bragg Scattering

—ikx

2o ces

The scattering of the electron wave from each successive atom in the periodic chain
would add up constructively in phase in the backward direction if the extra phase
accumulated by the wave in the round trip from one atom to the next one is a multiple
of 2x:

k2a =2z Bragg condition!

When this is satisfied, a forward
moving electron is strongly
reflected in the backward direction

T
>k=— ——

a

Similarly, a backward moving electron is strongly Bragg scattered in the forward
direction when




Electron in a 1D Periodic Potential: Perturbation Theory

Suppose kis near 7t/a :

V.
(;( T 27[/8) ‘¢k+27[/a>

V_
|Wk> z|¢k>+ e(k)—e(I:—Zﬂ'/a)‘¢k_2”/a>+ e(k)_e

+ higher order terms

Then |¢k> is strongly coupled

To ‘¢k_2,,/a> and ‘¢k_2ﬂ/a>is

strongly coupled to |¢k>

Way forward: abandon standard
perturbation theory and use
finite basis expansion !




Electron in a 1D Periodic Potential: Finite Basis Expansion

Now the Hamiltonian is:

(1| V | ) == <




Electron in a 1D Periodic Potential: Finite Basis Expansion
n2k?
2m

Suppose k is near n/a : Energy e(k) =

basis functions:
k) ~al|dy)+ b‘ ¢k—27r/a>

Plug this into the Schrodinger equation:

(Ao +V) i) = E(K)|wi)

Ho+V = %e(k)|¢k><¢k|+2 (1| V | 6c) | i) (9 |

To get the matrix equation:

PN WO

The new energies are:

e(k)+e(k-2r/a) . e(k)—e(k-2x/a)

() = <)+t Ll




Electron in a 1D Periodic Potential: Finite Basis Expansion
h2k?
2m

Suppose k is near -n/a : Energy e(k ) =

Keep the most important strong|y‘~~\“\
coupled basis functions:

vi) ~ ¢|d)+d| bes2n/a)

Plug this into the Schrodinger equation:

(Ao +V) i) = E(K)|wi)

Ao +V = e (k) ldh) (B + 2 {dhe[ V) ) (|-

To get the matrix equation:

[e\(ff) e (k Y‘Sz/aﬁm LCM

The new energies are:

(k)=e(k)+e(k+27r/a)i\/[e(k)—e(k+27z/a)J +|V1|2

2 2



Electron in a 1D Periodic Potential: Finite Basis Expansion

The obtained solutions E(k) are plotted on top of
the free-electron energy dispersion e(k) so that
you can see the difference.

An energy gap opens up!!

E (k) =

E (k) =

e(k)+e(k-2x/a) .
2

e(k)+e(k+2x/a) .

2

' Energy

CN

/.

J(

e(k)-e(k-2x/a)

2

e(k)-e(k+2x/a)

J(

2

2
[

2 2
[/ -

<

r k
a

f
for k near +rx/a
+ >

sign for k< r/a

9

f
for k near -rx/a

+ <
signfork —r/a

¢ >




Electron in a 1D Periodic Potential: Origin of the Bandgaps
We have: E, (k=7z/a)=e(k=7z/a)i|v1| t Energy

i)~ aldy) +b\¢k_z,,/a> , f
— COS

y/k_,,/a(x) \/7 ea te ax

Note that (for V, real):

* The solutions are
standing waves (as a result I a Y aYs
of forward and backward \ Y Y
Bragg scattering)

Lower energy Higher energy

solution ( )2 solution
* The higher energy |V/”/a X | ‘

solution has larger
probability density in the
region of higher potential




Electron in a 1D Periodic Potential: Summary

Summary of Findings:
* For a perturbative periodic potential with the following Fourier Series representation,

iz—ﬂ'x .27
V(X) = V1e a +V_1e a

the plane wave eigenfunctions of the free electron
with wavevector k get coupled with the wavevectors
(k + 2n/a) and (k - 2n/a) as a result of the fact that the
potential had wavevectors 2n/a and -2n/a in its
Fourier series

' Energy

* If the electron wavevector k is such that e(k) and
e(k-2n/a) have the same energy, or if e(k) and
e(k+2rn/a) have the same energy, then a bandgap of
magnitude 2|V,| will open up in the free electron
dispersion for the wavevector value k




Electron in a 1D Periodic Potential: More General Case

y

Now suppose the periodic ‘ Energy
potential looks like:

[ 2|V




Electron in a 1D Periodic Potential: Bloch’s Theorem

Vacuum level 0-—

Potential in

Function a crystal

Note that:

2 2
w(x+na)|” =|y(x) {n=0,+1,%2, Probability of finding the
electron is periodic

This implies that:

i6(na)

v(x+na)=e v (x)




Electron in a 1D Periodic Potential: Bloch’s Theorem

Vacuum level 0-—

Potential in

Function a crystal

w (X +na) = em("a)y/(x)

/\

=S y(x+a)= em(a)y/(x) S y(x+a)= em(a);y(x)

=y (x+2a)= eia(za)y/(x) S>y(x+a+a)= eia(a)w(x +a)= eia(a)eia(a)y/(x)

6(2a) = 26(a)

= H(a) occd@ — The phase is a linear function of a




Electron in a 1D Periodic Potential: Bloch’s Theorem

Vacuum level 0-—

Potential in

Function a crystal

io(a)

y(x+a)=e"y(x)

=>6(a)xa

Let: H(a) = ka » k is the constant of proportionality

ikaV/(X) — Bloch’s theorem
eikx
> 1 () =S () s w(xra) =y (x)
\ ;

f v

Bloch function A periodic function

Then: y(x+a)=e




Electron in a 1D Periodic Potential: Bloch’s Theorem

elkx

v (x)= \/Zuk(x) e \uk(x+a)=uk(x)}

! v

Bloch function A periodic function

Any periodic function can be expanded in a Fourier series:

27
I—MmM X
u, (x) =Yu,e 2

LU ' ]
Fourier Series

Since summation over m includes all
integers, k can be restricted to satisfy:

-r/a<k<r/a

The above convention is used almost
always!




Electron in a 1D Periodic Potential: Folded Bands and FBZ

1 Energy

= (k)é

Since k has been restricted to the range —7'[/8 <k< ﬂ/a , the energy dispersion

outside this range is folded into this range via translations by vectors that are
multiples of 2n/a

The dispersion thus obtained is split into energy bands

The interval —7/a < k < z/a is called the First Brillouin Zone (FBZ)




