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Lecture 25

Many Particle States and Wavefunctions, Identical Particles, 
Spin-Statistics Theorem, and Pauli’s Exclusion Principle

In this lecture you will learn:

• Writing quantum states of many particle 
systems
• Spin-statistics theorem
• Fermions and Pauli’s exclusion principle

Look a 
particle!

And another 
identical  
particle!

The horizon 
of perception
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Two Distinguishable Spinless Particles
Consider two distinguishable particles:

Let the quantum state of the system be 

1
2 A B A B         

Br


The wavefunction is obtained by projecting the quantum state onto the position basis 
of the joint Hilbert space:

         1, ,
2A B A B A B A Br r r r r r r r         

       

,A B A BA Br r r r 
   

This implies that the wavefunction of the system of particles is:

Ar


Particle A
Particle B

3 3 ˆ, , 1B A A B A Bd r d r r r r r  
     completeness
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Two Distinguishable Spinless Particles

Br


         1, ,
2A B A B A B A Br r r r r r r r         

       
The wavefunction of the system of particles is:

Ar


Particle A
Particle B

Probability                   of finding particle A at       and particle B at       is:Br


Ar


    2, ,A B A BP r r r r
   

Probability             of finding particle A at       (irrespective of where particle B might be):Ar


      23 3, ,A B A B B A BP r d r P r r d r r r  
      

 ,A BP r r
 

 AP r

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Many Particle Systems: Distinguishable Spinless Particles

Consider a system of N distinguishable spinless particles:

Let the quantum state of the system be: 

Coordinates: , , ,..........A B Cr r r
  

The wavefunction is obtained by projecting the quantum state onto the position basis 
of the joint Hilbert space:

 , , ,...... , , ,......A B C A B Cr r r r r r 
     

, , ,...... .......A B C A B CA B Cr r r r r r   
     

This implies that the wavefunction of the system of particles is:
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Two Indistinguishable (Identical) Particles
Consider now two indistinguishable (identical) particles:

Br


Ar


Let the quantum state of the system be 

Fundamental question: are 
these really two separate 
particles or just different 
manifestations of a single 
reality?

Look a 
particle!

And another 
identical  
particle!

The horizon 
of perception

Need to be careful 
how we think about 
indistinguishable 
particles!

They could all be 
parts of the same one 
big monster!

Need information 
about the particles’ 
spins too!
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Particles with Spin: What’s so Odd About Them?

Consider a particle with spin “s” and spin angular momentum operator       :

Let its full quantum state be: 

If we rotate the particle wrt to the spin axis, by angle , the quantum state becomes:

 ise  

If we rotate by 4, the state must come back to the original state (Why 4? Why not 2?):



4

4 1

0,1,2,3,......
2

is

is

e

e
ns n





 





 

   Spin “s” can only be 
integer, or half-integer !!

max

ˆ ˆ.S n

s

  



   
 







Ŝ


The proof of this 
is not in this 
course
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Particles with Spin 1/2: Hilbert Space 
Consider the quantum state of an electron – a particle with spin 1/2:

r


The Hilbert space is spanned by states of the form:

r z r z   
 

Completeness relation:

3 3 ˆ, , , , 1d r r z r z d r r z r z
 

       
 

     

Or, with some abuse of notation:

r z r z 
 

Or, just:

, ,r z r z 
 
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Consider the quantum state: f z z        

What is the probability of the particle being at location       with spin-up?r


 

 

2 2

2

2

,z r r z

r f z z z

f r

 

 



   

      



 





What is the probability of the particle being at location       with spin-down?r


 
 

2 2

2

,z r r z

f r

 



   



 



Particles with Spin 1/2: Hilbert Space 
r


What is the probability of the particle being at location       (irrespective of the spin)?r


  2 2 2f r    

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Particles with Spin 1/2: Two-Component Wavefunctions
r


Consider the quantum state: f z z        
What if one writes: r 



The above expression is meaningless by the strict rules we have established because 
one is taking an inner product between two different Hilbert spaces (one of particle 
with spin, and one of particle without spin)

However, it is often interpreted to mean the following:

   r r r f z z f r z z                   
   

In column vector representation for spin:

       
 

1 0
0 1

f r
r f r z z f r

f r


    

                          


  


Two-component 
wavefunction of 
the particle

Normalization:    3 1Hd r r r  
  

         
    2 2 2* * * *H f r

r r f r f r f r
f r


     


           


    



Probability of the electron at location      (irrespective of the spin):r

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Particles with Spin 1/2 : Unentangled Spin-Space States

Consider the quantum state of an electron – a particle with spin 1/2:

r


The quantum states, including the spin degree of freedom, can be of the form:

f z   

f z z        

The two-component wavefunction for the state is:

 
 

 
 

       

       

r r r f z z

f r z z

f r
f r

   

 




      
     

 
  
 

  






Two 
examples!
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Particles with Spin 1/2 : Entangled Spin-Space States

Consider the state:

f z g z      

Consider the quantum state of an electron – a particle with spin 1/2:

r


The two-component wavefunction for the state is:

 
   

   

 
 

                  

1 0
                  

0 1

                  

r r r f z r g z

f r z g r z

f r g r

f r
g r

     

   

   
    

   
 

  
 

   

 

 




Switch the spin basis 
representation to column 
vectors

The spin-up component 
has the spatial part        
and the spin-down 
component  has the 
spatial part     

f

g
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Particles with Spin 1 and Three-Component Wavefunctions
Consider the quantum state of a meson with spin 1:

r


There are now three spin states in the Hilbert space: 0z z z 

They are all eigenstates of the z-component of the spin angular momentum:
ˆ

ˆ 0 0 0
ˆ

z

z A

z

S z z

S z z

S z z

   

  

   




The complete quantum states, including the spin degree of freedom, are of the form:

f z   

0f z z z          

Two 
examples!

The three-component wavefunction for the last state above is:

   
 
 
 

1 0 0
0 0 1 0

0 0 1

f r
r r r f z z z f r f r

f r


        



       
                           
               


    


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Two Indistinguishable Particles with Spin: Quantum State Symmetry

Consider two indistinguishable particles (with spin now):

2) The quantum state is, 
Symmetric 
state (in labels 
A and B)

3) The quantum state is, 
Antisymmetric 
state in labels 
A and B

Spin is 
included

Spin is 
included

Example, for two spin-half electron, the states         and          above could be:

A A A
f z    A A A

g z   

Br
Ar


1
2 A B A B         

1
2 A B A B         



Spin is 
included

Spin is 
included

B B B
f z    B B B

g z   

1) The quantum state is, 

Spin is 
included

Spin is 
included

A B   

Are all three 
types of states 
possible ?

No special 
symmetry (in 
labels A and B)
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The Spin-Statistics Theorem

Wolfgang Ernst Pauli
1900-1958
Nobel Prize 1945

Markus Fierz
1912-2006

The spin-statistics theorem states that:

● The quantum state of a system of identical 
integer spin particles is symmetric under the 
exchange of any two particles. Particles with a 
symmetric state under such an exchange are 
called Bosons.

● The quantum state of a system of identical 
half-integer spin particles is antisymmetric 
under the exchange of any two particles. 
Particles with an antisymmetric state under 
such an exchange are called Fermions.

Symmetric 
state

Integer spin 
Bosons

Antisymmetric 
state

Half-integer 
spin Fermions

1
2 A B A B         

1
2 A B A B         

Br
Ar

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The Spin-Statistics Theorem Explained ……….NOT!
Usually the rule of thumb in sciences is:

“The more general the result, the easier the proof”

Or in Richard Feynman’s words:

“Simple results have simple explanations”

But thus far, an elementary explanation/proof for the spin-statistics theorem cannot be 
given despite the fact that the theorem is so general and so simple to state 

In the Feynman Lectures on Physics, Richard Feynman said that this probably means 
that “we do not have a complete understanding of the fundamental principle involved”

Spin-statistics theorem can be shown to hold using relativistic quantum field theory
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Fermion States and Pauli’s Exclusion Principle: An Example

Suppose:

Coordinates: ,A Br r
 

1
2 A B A B         

Case 1: 1
2

1         
2

A B A B

A B A B A B
f g g f z z

          

         

Spatial part antisymmetric 
in labels A and B

Spin part symmetric 
in labels A and B

A system of two indistinguishable Fermions with spin 1/2:

         1, ,
2A B A B A B A B A B

r r r r f r g r g r f r z z           
       

Note:          1 0
2A B A B

r r r f r g r g r f r z z             
      

The probability of finding two Fermions with the same spin at the same location is 0

A A A
f z   

A A A
g z   

B B B
f z   

B B B
g z   

The wavefunction is:
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Fermion States and Pauli’s Exclusion Principle

Coordinates: ,A Br r
 

1
2 A B A B         

Case 2: 1
2

1         
2

A B A B

A B A B A B
f f z z z z

          

           

Spatial part symmetric Spin part antisymmetric

Suppose:

      1, ,
2A B A B A B A B A B

r r r r f r f r z z z z              
     

Note:

The probability of finding two Fermions with different spins at the same location is 
not 0

      1
2A B A B A B

r r r f r f r z z z z              
    

A A A
f z   

A A A
f z   

B B B
f z   

B B B
f z   

A system of two indistinguishable Fermions with spin 1/2:

The wavefunction is:
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Pauli’s Exclusion Principle
Consider the following CSCO for fermions:

 ˆ ˆ ˆ ˆ, , , ,.......O A B H

The formal statement of the Pauli’s Exclusion Principle, which follows from the 
anti-symmetry of the Fermion quantum state, can be stated as follows:

No quantum state of two or more Fermions can exist in which two or more Fermions 
have the same eigenvalues for all the CSCO operators

In more simpler words:

No two Fermions can have the same values for all the observables 

Proof: consider the antisymmetric state of two fermions:

If the two fermions have the same eigenvalues for all the CSCO operators then this can 
only happen iff but then               and the quantum states does not exist                  

1
2 A B A B         

  0 
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Singlet and Triplet States of Spin 1/2 Particles
A system of two indistinguishable Fermions:

Coordinates: ,A Br r
 

1) Consider the following three states in which the spin part of the state is 
symmetric in labels A and B:

1 1
2 2A B A B A B A B

f g g f z z z z             

1
2 A B A B A B

f g g f z z       

1
2 A B A B A B

f g g f z z       

Triplet states

2) Consider the following single state in which the spin part of the state is 
anti-symmetric in labels A and B:

1 1
2 2A B A B A B A B

f g g f z z z z             
Singlet states1

2A B A B A B
f f z z z z         
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Three Distinguishable Particles of Spin Zero (Spinless Particles)

Consider a system of 3 distinguishable particles:

Let the quantum state of the system be 

Coordinates: , ,A B Cr r r
  

       , , , ,A B C A B C A B Cr r r r r r r r r     
        

This implies that the wavefunction of the system of particles is:

A B C   

Suppose:
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Three Distinguishable Particles of Spin 1/2

Consider a system of 3 distinguishable Fermions:

Let the quantum state of the system be 

Coordinates: , ,A B Cr r r
  

A B C   

Suppose:

Spin is 
included

Spin is 
included

Spin is 
included

electron
neutrino

positron

Note that the state need not be symmetric or anti-symmetric!
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Example: Three Indistinguishable Bosons

Consider a system of 3 indistinguishable Bosons:

Let the quantum state of the system be 

1
3!

A B C A B C A B C

A B C A B C A B C

        


        

  
  

    

Full symmetric state 
under the exchange 
of any two particles 
(i.e. any two labels)

Total of 3! terms

Suppose:

1
3!

A B C

A B C

A B C

  

   

  


 
 

  
 
  

A good way to write fully symmetric quantum states is using Slater permanents:

Coordinates: , ,A B Cr r r
  

Spin is 
included

Spin is 
included

Spin is 
included
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Example: Three Indistinguishable Bosons, All in the Same State!

Consider a system of 3 indistinguishable Bosons:

Let the quantum state of the system be 

Coordinates: , ,A B Cr r r
  

A B C   
Full symmetric state under the exchange of any 
two particles (i.e. any two labels)
But here all three  particles have the same exact 
state!

Suppose:

Spin is 
included

Spin is 
included

Spin is 
included

In a Bose-Einstein condensate, all bosons are in the same state!
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Example: Three Indistinguishable Fermions

Consider a system of 3 indistinguishable Fermions:

Let the quantum state of the system be 

Full antisymmetric 
state under the 
exchange of any two 
particles (i.e. any 
two labels)Total of 3! terms

Suppose:

A good way to write fully antisymmetric quantum states is using Slater determinants:

1
3!

A B C

A B C

A B C

  

   

  


 
 

  
 
  

Coordinates: , ,A B Cr r r
  

1
3!

A B C A B C A B C

A B C A B C A B C

        


        

  
  

    

Spin is 
included

Spin is 
included

Spin is 
included
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Fermion States and Pauli’s Exclusion Principle and Entanglement
Consider a system of three indistinguishable Fermions:

Let the quantum state of the system be 

Full antisymmetric 
state under the 
exchange of any two 
particles

Total of 3! terms

Suppose:

Suppose                  (i.e. two of the three particles have the exact same quantum state)  

1 0
3!

A B C A B C A B C

A B C A B C A B C

        


        

  
  

    
The quantum state does not exist!
For the quantum state to exist, all Fermions must have different quantum states in 
In other words, no two Fermions can have the same quantum state in 



Coordinates: , ,A B Cr r r
  

1
3!

A B C A B C A B C

A B C A B C A B C

        


        

  
  

    

Spin is 
included

Spin is 
included

Spin is 
included
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1

2

3

Electron Filling and Pauli’s Exclusion Principle

Fill the quantum well energy eigenstates with five electrons such that 
the system has the lowest possible total energy!



ECE 3030 – Summer 2009 – Cornell University

1

2

3

Electron Filling and Pauli’s Exclusion Principle

1

2

3

Or

No two electrons can 
have the exact same 
quantum state!!

No two electrons can 
have the exact same 
quantum state!!
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